The Python Library Reference
Release 3.8.20

Guido van Rossum
and the Python development team

September 08, 2024

Python Software Foundation
Email: docs@python.org

CONTENTS

1 Introduction 3
1.1 Notesonavailability e 3
2 Built-in Functions 5
3 Built-in Constants 27
3.1 Constants added by the sitemodule 28
4 Built-in Types 29
4.1 Truth Value Testing o o o e 29
4.2 Boolean Operations — and, O, NOT + v v v v v v v v v e e e e e e e e e e e e e e e e 29
4.3 COMPATISONS « v v v v v e 30
4.4 Numeric Types — int, float,complex oo v ittt 30
4.5 Tterator Types oL e 36
4.6 Sequence Types — 1ist, tuple, Tange v v v v i vv i v ittt 37
477 TextSequence Type — STT . . . v v i v v i i e e e e e e e e e e e e e e e e e 43
4.8 Binary Sequence Types — bytes, bytearray, memoryview 52
49 SetTypes — set, frozenset v v v v i v i i i e e e e e e e 72
4.10 Mapping Types — dict o e 75
4.11 Context Manager Types e 79
4.12 Other Built-in Types e e e 80
4.13 Special Attributes e e e e e e e e e e e e e e e e 82
4.14 Integer string conversion length limitation 0., 83
5 Built-in Exceptions 87
S0 Baseclasses L. 88
5.2 Concrete eXCeptionsot e e e e e e e e e e e e e e e e 88
53 Warnings e e e e 94
54 Exceptionhierarchy e 95
6 Text Processing Services 97
6.1 string— Common String OPerations oo i i e e e 97
6.2 re — Regular expression Operations v vt vt et e e e e e e e 108
6.3 difflib — Helpers for computingdeltas 126
6.4 textwrap — Textwrappingandfilling 136
6.5 wunicodedata —Unicode Database, 139
6.6 stringprep — Internet String Preparation Lo 141
6.7 readline — GNUreadlineinterface 142
6.8 rlcompleter — Completion function for GNU readline 146
7 Binary Data Services 149
7.1 struct — Interpret bytes as packed binarydatao 149
7.2 codecs — Codecregistryand base classes oo 154
8 Data Types 171

8.1 datetime — Basicdateand time types oo et 171
8.2 calendar — General calendar-related functions oL 205
83 collections — Container datatypes v v v v v it e e e e e e e e e e 209
84 collections.abc — Abstract Base Classes for Containers 225
8.5 heapg— Heap queue algorithm 229
8.6 Dbisect — Array bisection algorithm oL 233
8.7 array — Efficient arrays of numeric valueso 235
8.8 weakref — Weakreferences L e 238
8.9 types — Dynamic type creation and names for built-intypes 244
8.10 copy — Shallow and deep copy operations 249
8.11 pprint — Datapretty printer o ot e e e e e e e 250
8.12 reprlib — Alternate repr () implementation L 255
8.13 enum — Support forenumerations L. e e 257
9 Numeric and Mathematical Modules 277
9.1 numbers — Numeric abstract base classes L 277
9.2 math — Mathematical functions L 280
9.3 cmath — Mathematical functions for complex numbers 286
94 decimal — Decimal fixed point and floating point arithmetic 289
9.5 fractions —Rationalnumbers 315
9.6 random — Generate pseudo-random numberso oL 317
9.7 statistics — Mathematical statistics functions oL 323
10 Functional Programming Modules 335
10.1 itertools — Functions creating iterators for efficient looping 335
10.2 functools — Higher-order functions and operations on callable objects 349
10.3 operator — Standard operators as functions oL Lo 357
11 File and Directory Access 365
11.1 pathlib — Object-oriented filesystem paths 365
11.2 os.path — Common pathname manipulations 381
11.3 fileinput — Iterate over lines from multiple input streams 386
11.4 stat — Interpreting stat () results e 388
11.5 filecmp — File and Directory Comparisons« o v v v v v v v v iv v 393
11.6 tempfile — Generate temporary files and directories 395
11.7 glob — Unix style pathname pattern expansion. v v .. 399
11.8 fnmatch — Unix filename pattern matching 0. 400
11.9 linecache — Randomaccesstotextlines 401
11.10 shutil — High-level file operations 402
12 Data Persistence 413
12.1 pickle — Python object serialization 413
12.2 copyreg — Register pickle supportfunctions 428
12.3 shelve — Pythonobject persistence v i v v i v v vt e e e e 429
12.4 marshal — Internal Python object serialization 432
12.5 dbm — Interfaces to Unix “databases” e 433
12.6 sglite3 — DB-API 2.0 interface for SQLite databases 437
13 Data Compression and Archiving 459
13.1 zlib — Compression compatible withgzip 000, 459
13.2 gzip — Supportfor gzipfiles 462
13.3 bz2 — Support for bzip2 compressionol e 465
13.4 1zma — Compression using the LZMA algorithm 469
13.5 zipfile — WorkwithZIParchives 475
13.6 tarfile — Read and write tar archivefiles 484
14 File Formats 499
14.1 csv—CSVFileReadingand Writing, 499
142 configparser — Configurationfileparsero 505

143 netrc—netrcfile processingo e e 521

144 xdrlib — Encode and decode XDRdata 522
145 plistlib — Generate and parse Mac OS X .plistfiles 525
15 Cryptographic Services 529
15.1 hashlib — Secure hashes and message digests i 529
15.2 hmac — Keyed-Hashing for Message Authentication 539
15.3 secrets — Generate secure random numbers for managing secrets 540
16 Generic Operating System Services 543
16.1 os — Miscellaneous operating system interfaces 543
16.2 io — Core tools for working with streams oL 0oL 592
16.3 time — Time access and CONVEISIONS v v v v v vt i i it e e e e e e 604
16.4 argparse — Parser for command-line options, arguments and sub-commands 613
16.5 getopt — C-style parser for command line options 644
16.6 logging — Logging facility for Python L. o, 646
16.7 logging.config — Logging configuration 662
16.8 logging.handlers — Logginghandlers 672
169 getpass — Portable password inputo 684
16.10 curses — Terminal handling for character-cell displays 684
16.11 curses.textpad — Text input widget for curses programs 701
16.12 curses.ascii — Utilities for ASCII characters 702
16.13 curses.panel — A panel stack extension forcurses L. 704
16.14 plat form — Access to underlying platform’s identifyingdata 706
16.15 errno — Standard errno system symbols L L L 709
16.16 ctypes — A foreign function library for Python 714
17 Concurrent Execution 747
17.1 threading — Thread-based parallelism, 747
17.2 multiprocessing — Process-based parallelism. 759
17.3 multiprocessing.shared_memory — Provides shared memory for direct access across
PIOCESSES . . v v v v v e e e e e e e e e e e e e e e e e 800
17.4 The concurrent package o it e 804
17.5 concurrent.futures — Launching parallel tasks 805
17.6 subprocess — Subprocess management o vv e e e e e e e e e e e 811
1777 sched —Eventscheduler 828
17.8 queue — A synchronized queueclass o oo 829
179 contextvars — Context Variables o 832
17.10 _thread — Low-level threading API 836
17.11 _dummy_thread — Drop-in replacement for the _threadmodule 838
17.12 dummy_threading — Drop-in replacement for the threadingmodule 838
18 Networking and Interprocess Communication 839
18.1 asyncio—AsynchronousI/O 839
18.2 socket — Low-level networking interface 922
18.3 ss1 — TLS/SSL wrapper for socketobjects 945
184 select — Waiting for /O completion e 979
18.5 selectors — High-level /O multiplexing 986
18.6 asyncore — Asynchronous sockethandler 989
18.7 asynchat — Asynchronous socket command/response handler 993
18.8 signal — Set handlers for asynchronousevents 995
18.9 mmap — Memory-mapped file support e 1003
19 Internet Data Handling 1007
19.1 email — Anemail and MIME handling package 1007
19.2 json —JSONencoder and decoder e 1062
193 mailcap — Mailcapfilehandling L o 1071
19.4 mailbox — Manipulate mailboxes in various formats oL 1072

19.5 mimetypes — Map filenamesto MIME types o o 1089

20

21

22

19.6 base64 — Basel6, Base32, Base64, Base85 Data Encodings
19.7 binhex — Encode and decode binhex4 files
19.8 binascii — Convert between binaryand ASCIT
19.9 quopri — Encode and decode MIME quoted-printable data
19.10 uu — Encode and decode uuencode files

Structured Markup Processing Tools

20.1 html — HyperText Markup Language support
20.2 html.parser — Simple HTML and XHTML parser
20.3 html.entities — Definitions of HTML general entities
20.4 XML Processing Modules e e e e e e
20.5 xml.etree.ElementTree — The ElementTree XML APT
20.6 xml.dom — The Document Object Model API
20.7 xml.dom.minidom — Minimal DOM implementation
20.8 xml.dom.pulldom — Support for building partial DOM trees
20.9 xml.sax — Support for SAX2 parsers v v v v i e e e e e e e e e e e e e
20.10 xml.sax.handler — Base classes for SAX handlers
20.11 xml.sax.saxutils — SAX Utlities L o e
20.12 xml.sax.xmlreader — Interface for XML parsers
20.13 xml .parsers.expat — Fast XML parsingusing Expat

Internet Protocols and Support

21.1 webbrowser — Convenient Web-browser controller
21.2 cgi — Common Gateway Interface supporto
21.3 cgitb — Traceback manager for CGIscripts.« o o v i i v i et
21.4 wsgiref — WSGI Utilities and Reference Implementation
21.5 urllib —URLhandlingmodules
21.6 urllib.request — Extensible library foropening URLs
21.7 urllib.response — Response classesused by urllib
21.8 urllib.parse — Parse URLsinto components
219 urllib.error — Exception classes raised by urllib.request
21.10 urllib.robotparser — Parser forrobots.txt 0.
21.11 http — HTTP modules e e e e
21.12 http.client — HTTP protocolclient
21.13 ftplib — FTP protocol client o e
21.14 poplib — POP3 protocol client i i e e e e
21.15 imaplib — IMAP4 protocolclient L e
21.16 nntplib — NNTP protocol client
21.17 smtplib — SMTP protocol client e
21.18 smtpd — SMTP Server e e e e e e e e
21.19 telnetlib —Telnetclient o i i
21.20 uuid — UUID objects accordingto RFC 4122
21.21 socketserver — A framework for network servers oL
2122 http.server — HTTPservers o o i i i s e e e e s e e
21.23 http.cookies — HTTP state management
21.24 http.cookiejar — Cookie handling for HTTP clients
21.25 xmlrpc — XMLRPC server and clientmodules
21.26 xmlrpc.client — XML-RPCclientaccess oo vt i i i e v
21.27 xmlrpc.server — Basic XML-RPCservers.
21.28 ipaddress — IPv4/IPv6 manipulation library L

Multimedia Services

22.1 audioop — Manipulate raw audiodata oL Lo o
222 aifc — Readand write AIFFand AIFCfiles
223 sunau—Readand write Sun AUfiles o o L.
224 wave —Readand write WAV files oo
225 chunk —Read IFF chunkeddata,
22.6 colorsys — Conversions between color systems oL
2277 imghdr — Determine the type of animage

23

24

25

26

27

28

29

22.8 sndhdr — Determine type of soundfile
22.9 ossaudiodev — Access to OSS-compatible audiodevices

Internationalization
23.1 gettext — Multilingual internationalization serviceso
23.2 locale — Internationalization SEIVICES « v v v v v v v v e e e e e e e e e e e

Program Frameworks

24.1 turtle — Turtle graphicS o o i e e e e e e e
24.2 cmd — Support for line-oriented command interpreterso
243 shlex — Simple lexical analysis L

Graphical User Interfaces with Tk

25.1 tkinter — Pythoninterface to Tcl/Tk. o o
25.2 tkinter.ttk — Tkthemedwidgets e
253 tkinter.tix — Extensionwidgetsfor Tk
254 tkinter.scrolledtext — Scrolled Text Widget,
25.5 IDLE o e e
25.6 Other Graphical User Interface Packages

Development Tools

26.1 typing — Supportfortypehints e
26.2 pydoc — Documentation generator and online help system
26.3 doctest — Testinteractive Pythonexamples
264 unittest — Unittesting framework oo L.
26.5 unittest.mock —mock objectlibrary o
26.6 unittest.mock —gettingstarted L. L Lo
26.7 2to3 - Automated Python 2 to 3 code translation L.
26.8 test — Regression tests package for Python oL o oL
269 test.support — Utilities for the Pythontestsuite.
26.10 test.support.script_helper — Utilities for the Python execution tests

Debugging and Profiling

27.1 Auditeventstableo e
27.2 bdb — Debugger framework
273 faulthandler — Dump the Python traceback
27.4 pdb — The Python Debugger e
27.5 The Python Profilers e e e e e
27.6 timeit — Measure execution time of small code snippets
277 trace — Trace or track Python statement execution
27.8 tracemalloc — Trace memory allocations

Software Packaging and Distribution

28.1 distutils — Building and installing Python modules
28.2 ensurepip — Bootstrapping the pipinstaller L
28.3 wvenv — Creation of virtual environments e
28.4 zipapp — Manage executable Python ziparchives,

Python Runtime Services

29.1 sys — System-specific parameters and functions L Lo
29.2 sysconfig — Provide access to Python’s configuration information
293 builtins —Built-inobjects oL e
294 _ _main___ — Top-level scriptenvironment Lo
29.5 warnings — Warningcontrolol e
29.6 dataclasses —DataClasses. o v v it e e e e e e e e e e
29.7 contextlib — Utilities for with-statement contexts
29.8 abc — Abstract Base Classeso e e e e e
299 atexit —Exithandlers e e e e
29.10 traceback — Print or retrieve a stack traceback 0oL

30

31

32

33

34

35

36

29.11 __ future__ — Future statement definitions oL
29.12 gc — Garbage Collector interface oo e e e e
29.13 inspect — Inspectlive objects L e e
29.14 site — Site-specific configurationhook oL oo

Custom Python Interpreters
30.1 code — Interpreter base classes L e
30.2 codeop — Compile Pythoncode

Importing Modules

31.1 zipimport — Import modules from Zip archives L.
31.2 pkgutil — Package extensionutility oL oL
31.3 modulefinder — Find modulesused by ascript
31.4 runpy — Locating and executing Python modules
31.5 importlib — The implementation of import
31.6 Using importlib.metadata i ittt e

Python Language Services

32.1 parser — Access Pythonparsetrees Lo e e e
322 ast — Abstract Syntax Trees oL
32.3 symtable — Access to the compiler's symbol tables
324 symbol — Constants used with Python parsetrees,
32.5 token — Constants used with Python parsetrees.
32.6 keyword — Testing for Python keywords
327 tokenize — Tokenizer for Pythonsource
32.8 tabnanny — Detection of ambiguous indentationo oL
32.9 pyclbr — Python module browser support oL o oL
32.10 py_compile — Compile Python sourcefiles
32.11 compileall — Byte-compile Python libraries
32.12 dis — Disassembler for Pythonbytecode o
32.13 pickletools — Tools for pickle developers

Miscellaneous Services
33.1 formatter — Generic output formatting Lo

MS Windows Specific Services

34.1 msilib — Read and write Microsoft Installer files
34.2 msvcrt — Useful routines from the MS VC++runtime
343 winreg — Windows registry aCCesst . e e e e e e
344 winsound — Sound-playing interface for Windows oL

Unix Specific Services

35.1 posix — The most common POSIX systemcalls
35.2 pwd — The password database e
35.3 spwd — The shadow password database
354 grp—Thegroupdatabase i i i i e e e e e e e e
35.5 crypt — Function to check Unix passwords e
35.6 termios —POSIXstylettycontrol
357 tty — Terminal control functions e e e e e
35.8 pty — Pseudo-terminal utilities e e
359 fcntl —The fentlandioctlsystemcalls. o o . oo o oo
35.10 pipes — Interface to shell pipelines
35.11 resource — Resource usage information oL
35.12 nis — Interface to Sun’s NIS (Yellow Pages)
35.13 syslog — Unix syslog library routines e

Superseded Modules
36.1 optparse — Parser for command lineoptionso
36.2 imp — Access the importinternalso

vi

37 Undocumented Modules
37.1 Platform specific modules

A Glossary

B About these documents
B.1 Contributors to the Python Documentation

C History and License
C.1 History of the software

C.2 Terms and conditions for accessing or otherwise using Python

C.3 Licenses and Acknowledgements for Incorporated Software
D Copyright
Bibliography
Python Module Index

Index

1865
1865

1867

1879
1879

1881
1881
1882
1885

1897

1899

1901

1905

vii

viii

The Python Library Reference, Release 3.8.20

While reference-index describes the exact syntax and semantics of the Python language, this library reference manual
describes the standard library that is distributed with Python. It also describes some of the optional components that
are commonly included in Python distributions.

Python’s standard library is very extensive, offering a wide range of facilities as indicated by the long table of contents
listed below. The library contains built-in modules (written in C) that provide access to system functionality such as
file I/O that would otherwise be inaccessible to Python programmers, as well as modules written in Python that provide
standardized solutions for many problems that occur in everyday programming. Some of these modules are explicitly
designed to encourage and enhance the portability of Python programs by abstracting away platform-specifics into
platform-neutral APIs.

The Python installers for the Windows platform usually include the entire standard library and often also include many
additional components. For Unix-like operating systems Python is normally provided as a collection of packages,
so it may be necessary to use the packaging tools provided with the operating system to obtain some or all of the
optional components.

In addition to the standard library, there is a growing collection of several thousand components (from individual pro-
grams and modules to packages and entire application development frameworks), available from the Python Package
Index.

CONTENTS 1

https://pypi.org
https://pypi.org

The Python Library Reference, Release 3.8.20

2 CONTENTS

CHAPTER
ONE

INTRODUCTION

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and lists.
For these types, the Python language core defines the form of literals and places some constraints on their semantics,
but does not fully define the semantics. (On the other hand, the language core does define syntactic properties like
the spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without the
need of an import statement. Some of these are defined by the core language, but many are not essential for the
core semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this collection.
Some modules are written in C and built in to the Python interpreter; others are written in Python and imported in
source form. Some modules provide interfaces that are highly specific to Python, like printing a stack trace; some
provide interfaces that are specific to particular operating systems, such as access to specific hardware; others provide
interfaces that are specific to a particular application domain, like the World Wide Web. Some modules are available
in all versions and ports of Python; others are only available when the underlying system supports or requires them;
yet others are available only when a particular configuration option was chosen at the time when Python was compiled
and installed.

This manual is organized “from the inside out:” it first describes the built-in functions, data types and exceptions, and
finally the modules, grouped in chapters of related modules.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored, you
will get a reasonable overview of the available modules and application areas that are supported by the Python library.
Of course, you don’t have to read it like a novel — you can also browse the table of contents (in front of the manual),
or look for a specific function, module or term in the index (in the back). And finally, if you enjoy learning about
random subjects, you choose a random page number (see module random) and read a section or two. Regardless
of the order in which you read the sections of this manual, it helps to start with chapter Built-in Functions, as the
remainder of the manual assumes familiarity with this material.

Let the show begin!

1.1 Notes on availability

o An “Availability: Unix” note means that this function is commonly found on Unix systems. It does not make
any claims about its existence on a specific operating system.

« If not separately noted, all functions that claim “Availability: Unix” are supported on Mac OS X, which builds
on a Unix core.

The Python Library Reference, Release 3.8.20

4 Chapter 1. Introduction

CHAPTER
TWO

BUILT-IN FUNCTIONS

The Python interpreter has a number of functions and types built into it that are always available. They are listed
here in alphabetical order.

Built-in Functions
abs () delattr() hash () memoryview () set ()
all() dict () help() min () setattr ()
any () dir() hex () next () slice()
ascii () divmod () id() object () sorted()
bin() enumerate () input () oct () staticmethod ()
bool () eval () int () open () str()
breakpoint () exec () isinstance() ord() sum/()
bytearray () filter() issubclass () pow () super ()
bytes () float () iter() print () tuple ()
callable () format () len () property () type ()
chr () frozenset () 1list () range () vars ()
classmethod () getattr () locals () repr () zip ()
compile () globals () map () reversed () __import__ ()
complex () hasattr () max () round ()

abs (x)
Return the absolute value of a number. The argument may be an integer or a floating point number. If the
argument is a complex number, its magnitude is returned. If x defines __abs__ (), abs (x) returns x.
abs__ ().

all (iterable)
Return True if all elements of the iterable are true (or if the iterable is empty). Equivalent to:

def all (iterable):
for element in iterable:
if not element:
return False
return True

any (iterable)
Return True if any element of the iterable is true. If the iterable is empty, return False. Equivalent to:

def any(iterable):
for element in iterable:
if element:
return True
return False

ascii (object)
As repr (), return a string containing a printable representation of an object, but escape the non-ASCII
characters in the string returned by repr () using \x, \u or \U escapes. This generates a string similar to
that returned by repr () in Python 2.

The Python Library Reference, Release 3.8.20

bin (x)
Convert an integer number to a binary string prefixed with “Ob”. The result is a valid Python expression. If x is
not a Python int object, it has to define an __index__ () method that returns an integer. Some examples:

>>> bin(3)
'Ob11"

>>> bin (-10)
'-0b1010"

If prefix “Ob” is desired or not, you can use either of the following ways.

>>> format (14, '#b'), format (14, 'b')
('Ob1110', '1110")

>>> f'{14:4b}', £'{14:b}"'

('0Ob1110', '"1110")

See also format () for more information.

class bool ([x])
Return a Boolean value, i.e. one of True or False. x is converted using the standard rruth testing procedure.
If x is false or omitted, this returns False; otherwise it returns True. The bool class is a subclass of int
(see Numeric Types — int, float, complex). It cannot be subclassed further. Its only instances are False and
True (see Boolean Values).

Changed in version 3.7: x is now a positional-only parameter.

breakpoint (*args, **kws)
This function drops you into the debugger at the call site. Specifically, it calls sys.breakpointhook (),
passing args and kws straight through. By default, sys.breakpointhook () calls pdb.
set_trace () expecting no arguments. In this case, it is purely a convenience function so you don’t have to
explicitly import pdb or type as much code to enter the debugger. However, sys.breakpointhook ()
can be set to some other function and breakpoint () will automatically call that, allowing you to drop into
the debugger of choice.

Raises an auditing event builtins.breakpoint with argument breakpointhook.
New in version 3.7.

class bytearray ([source[, encoding[, errors]]])
Return a new array of bytes. The bytearray class is a mutable sequence of integers in the range 0 <= x <
256. It has most of the usual methods of mutable sequences, described in Mutable Sequence Types, as well as
most methods that the byt es type has, see Bytes and Bytearray Operations.

The optional source parameter can be used to initialize the array in a few different ways:

o If it is a string, you must also give the encoding (and optionally, errors) parameters; bytearray () then
converts the string to bytes using st r.encode ().

« If it is an integer, the array will have that size and will be initialized with null bytes.

« Ifitis an object conforming to the buffer interface, a read-only buffer of the object will be used to initialize
the bytes array.

o If it is an iterable, it must be an iterable of integers in the range 0 <= x < 256, which are used as the
initial contents of the array.

Without an argument, an array of size 0 is created.
See also Binary Sequence Types — bytes, bytearray, memoryview and Bytearray Objects.

class bytes ([source[, encoding[, err()rs]]])
Return a new “bytes” object, which is an immutable sequence of integers in the range 0 <= x < 256.
bytes is an immutable version of bytearray - it has the same non-mutating methods and the same in-
dexing and slicing behavior.

Accordingly, constructor arguments are interpreted as for bytearray ().

6 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.8.20

Bytes objects can also be created with literals, see strings.

See also Binary Sequence Types — bytes, bytearray, memoryview, Bytes Objects, and Bytes and Bytearray Op-
erations.

callable (object)
Return True if the object argument appears callable, F'a 1 se if not. If this returns True, it is still possible
that a call fails, but if it is False, calling object will never succeed. Note that classes are callable (calling a
class returns a new instance); instances are callable if their classhasa__ _call__ () method.

New in version 3.2: This function was first removed in Python 3.0 and then brought back in Python 3.2.

chr (i)
Return the string representing a character whose Unicode code point is the integer i. For example, chr (97)
returns the string 'a ', while chr (8364) returns the string '€ '. This is the inverse of ord ().

The valid range for the argument is from O through 1,114,111 (Ox10FFFF in base 16). ValueError will be
raised if i is outside that range.

@classmethod
Transform a method into a class method.

A class method receives the class as implicit first argument, just like an instance method receives the instance.
To declare a class method, use this idiom:

class C:
@classmethod
def f(cls, argl, arg2, ...):

The @classmethod form is a function decorator — see function for details.

A class method can be called either on the class (such as C. £ ()) or on an instance (such as C () . £ ()). The
instance is ignored except for its class. If a class method is called for a derived class, the derived class object
is passed as the implied first argument.

Class methods are different than C++ or Java static methods. If you want those, see staticmethod ().
For more information on class methods, see types.

compile (source, filename, mode, flags=0, dont_inherit=False, optimize=-1)
Compile the source into a code or AST object. Code objects can be executed by exec () or eval (). source
can either be a normal string, a byte string, or an AST object. Refer to the a st module documentation for
information on how to work with AST objects.

The filename argument should give the file from which the code was read; pass some recognizable value if it
wasn't read from a file (' <string>"' is commonly used).

The mode argument specifies what kind of code must be compiled; it can be 'exec' if source consists of a
sequence of statements, 'eval' if it consists of a single expression, or 'single"' if it consists of a single
interactive statement (in the latter case, expression statements that evaluate to something other than None will
be printed).

The optional arguments flags and dont_inherit control which future statements affect the compilation of source.
If neither is present (or both are zero) the code is compiled with those future statements that are in effect in
the code that is calling compile (). If the flags argument is given and dont_inherit is not (or is zero) then
the future statements specified by the flags argument are used in addition to those that would be used anyway.
If dont_inherit is a non-zero integer then the flags argument is it — the future statements in effect around the
call to compile are ignored.

Future statements are specified by bits which can be bitwise ORed together to specify multiple statements. The
bitfield required to specify a given feature can be found as the compiler_ flag attribute onthe _Feature
instance inthe future module.

The optional argument flags also controls whether the compiled source is allowed to contain top-level await,
async for and async with. When the bit ast .PyCF_ALLOW_TOP_LEVEL_AWAIT is set, the
return code object has CO_COROUTINE set in co_code, and can be interactively executed via await
eval (code_obiject).

The Python Library Reference, Release 3.8.20

The argument optimize specifies the optimization level of the compiler; the default value of -1 selects the op-
timization level of the interpreter as given by —O options. Explicit levels are O (no optimization; __debug__
is true), 1 (asserts are removed, ___debug___is false) or 2 (docstrings are removed t0o).

This function raises SyntaxError if the compiled source is invalid, and ValueError if the source con-
tains null bytes.

If you want to parse Python code into its AST representation, see ast . parse ().

Raises an auditing event compile with arguments source and £ilename. This event may also be raised
by implicit compilation.

Note: When compiling a string with multi-line code in 'single' or 'eval' mode, input must be termi-
nated by at least one newline character. This is to facilitate detection of incomplete and complete statements
in the code module.

Warning: It is possible to crash the Python interpreter with a sufficiently large/complex string when
compiling to an AST object due to stack depth limitations in Python’s AST compiler.

Changed in version 3.2: Allowed use of Windows and Mac newlines. Also input in 'exec' mode does not
have to end in a newline anymore. Added the optimize parameter.

Changed in version 3.5: Previously, TypeError was raised when null bytes were encountered in source.

New in version 3.8: ast .PyCF_ALLOW_TOP_LEVEL_AWAIT can now be passed in flags to enable support
for top-level await, async for,and async with.

class complex ([real[, imag]])
Return a complex number with the value real + imag*1j or convert a string or number to a complex number. If
the first parameter is a string, it will be interpreted as a complex number and the function must be called without
a second parameter. The second parameter can never be a string. Each argument may be any numeric type
(including complex). If imag is omitted, it defaults to zero and the constructor serves as a numeric conversion
like int and f1oat. If both arguments are omitted, returns 0.

For a general Python object x, complex (x) delegates to x.___complex__ (). If __complex__ ()
is not defined then it falls back to __ float__ (). If _ float__ () is not defined then it falls back to
__index__ ().

Note: When converting from a string, the string must not contain whitespace around the central + or —
operator. For example, complex ('1+273 ") isfine, but complex ('1 + 23j'") raises ValueError.

The complex type is described in Numeric Types — int, float, complex.
Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.

Changed in version 3.8: Falls back to __index_ () if _ complex_ () and _ float__ () are not
defined.

delattr (object, name)
This is a relative of setattr (). The arguments are an object and a string. The string must be the name
of one of the object’s attributes. The function deletes the named attribute, provided the object allows it. For
example, delattr (x, 'foobar') isequivalenttodel x.foobar.

class dict (**kwarg)

class dict (mapping, **kwarg)

class dict (iterable, **kwarg)
Create a new dictionary. The dict object is the dictionary class. See dict and Mapping Types — dict for
documentation about this class.

For other containers see the built-in 11 st, set, and tuple classes, as well as the collect ions module.

8 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.8.20

dir([object])
Without arguments, return the list of names in the current local scope. With an argument, attempt to return a
list of valid attributes for that object.

If the object has a method named __dir__ (), this method will be called and must return the list of attributes.
This allows objects that implement a custom __getattr__ () or _ _getattribute__ () function to
customize the way dir () reports their attributes.

If the object does not provide __dir__ (), the function tries its best to gather information from the object’s
__dict__ attribute, if defined, and from its type object. The resulting list is not necessarily complete, and
may be inaccurate when the object has a custom __getattr__ ().

The default dir () mechanism behaves differently with different types of objects, as it attempts to produce
the most relevant, rather than complete, information:

« If the object is a module object, the list contains the names of the module’s attributes.

« If the object is a type or class object, the list contains the names of its attributes, and recursively of the
attributes of its bases.

« Otherwise, the list contains the object’s attributes’ names, the names of its class’s attributes, and recursively
of the attributes of its class’s base classes.

The resulting list is sorted alphabetically. For example:

>>> import struct

>>> dir () # show the names in the module namespace

['"__builtins_ ', '_ _name__ ', 'struct']

>>> dir (struct) # show the names in the struct module

['Struct', '__all__ ', '_ builtins__ ', '__cached__', '__doc__', '_ _file_ ',
' initializing__', '__loader__ ', '__name__', '_ package_ ',

'_clearcache', 'calcsize', 'error', 'pack', 'pack_into',

'unpack', 'unpack_ from']
>>> class Shape:

def _ dir_ (self):

C return ['area', 'perimeter', 'location']
>>> s = Shape ()
>>> dir(s)
["area', 'location', 'perimeter']

Note: Because dir () is supplied primarily as a convenience for use at an interactive prompt, it tries to
supply an interesting set of names more than it tries to supply a rigorously or consistently defined set of names,
and its detailed behavior may change across releases. For example, metaclass attributes are not in the result
list when the argument is a class.

divmod (a, b)
Take two (non complex) numbers as arguments and return a pair of numbers consisting of their quotient and
remainder when using integer division. With mixed operand types, the rules for binary arithmetic operators
apply. For integers, the result is the same as (a // b, a % b). For floating point numbers the result is
(g, a % b),wheregisusuallymath.floor (a / b) butmay be 1 less than that. Inanycase g * b

+ a % bisveryclosetoa,if a $ Db isnon-zero it has the same sign as b, and 0 <= abs(a % b) <
abs (b).

enumerate (iterable, start=0)
Return an enumerate object. iferable must be a sequence, an iferator, or some other object which supports
iteration. The __next__ () method of the iterator returned by enumerate () returns a tuple containing
a count (from start which defaults to 0) and the values obtained from iterating over iterable.

>>> seasons = ['Spring', 'Summer', 'Fall', 'Winter']
>>> list (enumerate (seasons))
[(O, 'Spring'), (1, 'Summer'), (2, 'Fall'), (3, 'Winter')]

(continues on next page)

The Python Library Reference, Release 3.8.20

(continued from previous page)

>>> list (enumerate (seasons, start=1))
[(1, 'Spring'), (2, 'Summer'), (3, 'Fall'), (4, 'Winter')]

Equivalent to:

def enumerate (sequence, start=0):
n = start
for elem in sequence:
yield n, elem
n += 1

eval (expression[, globals[, locals]])
The arguments are a string and optional globals and locals. If provided, globals must be a dictionary. If
provided, locals can be any mapping object.

The expression argument is parsed and evaluated as a Python expression (technically speaking, a condition list)
using the globals and locals dictionaries as global and local namespace. If the globals dictionary is present and
does not contain a value for the key _ _builtins__, a reference to the dictionary of the built-in module
builtinsisinserted under that key before expression is parsed. This means that expression normally has full
access to the standard bui 1t ins module and restricted environments are propagated. If the locals dictionary
is omitted it defaults to the globals dictionary. If both dictionaries are omitted, the expression is executed with
the globals and locals in the environment where eval () is called. Note, eval() does not have access to the
nested scopes (non-locals) in the enclosing environment.

The return value is the result of the evaluated expression. Syntax errors are reported as exceptions. Example:

>>> x = 1
>>> eval ('
2

x+1")

This function can also be used to execute arbitrary code objects (such as those created by compile ()). In
this case pass a code object instead of a string. If the code object has been compiled with 'exec' as the
mode argument, eval ()’s return value will be None.

Hints: dynamic execution of statements is supported by the exec () function. The globals () and
locals () functions returns the current global and local dictionary, respectively, which may be useful to
pass around for use by eval () or exec ().

See ast.literal_ eval () for afunction that can safely evaluate strings with expressions containing only
literals.

Raises an auditing event exec with the code object as the argument. Code compilation events may also be
raised.

exec (object[, globals[, locals]])
This function supports dynamic execution of Python code. object must be either a string or a code object.
If it is a string, the string is parsed as a suite of Python statements which is then executed (unless a syntax
error occurs).' If it is a code object, it is simply executed. In all cases, the code that’s executed is expected to
be valid as file input (see the section “File input” in the Reference Manual). Be aware that the nonlocal,
yield, and return statements may not be used outside of function definitions even within the context of
code passed to the exec () function. The return value is None.

In all cases, if the optional parts are omitted, the code is executed in the current scope. If only globals is
provided, it must be a dictionary (and not a subclass of dictionary), which will be used for both the global and
the local variables. If globals and locals are given, they are used for the global and local variables, respectively.
If provided, locals can be any mapping object. Remember that at module level, globals and locals are the
same dictionary. If exec gets two separate objects as globals and locals, the code will be executed as if it were
embedded in a class definition.

I Note that the parser only accepts the Unix-style end of line convention. If you are reading the code from a file, make sure to use newline
conversion mode to convert Windows or Mac-style newlines.

10 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.8.20

If the globals dictionary does not contain a value for the key __builtins__, a reference to the dictionary
of the built-in module builtins is inserted under that key. That way you can control what builtins are
available to the executed code by inserting your own ___builtins__ dictionary into globals before passing
itto exec ().

Raises an auditing event exec with the code object as the argument. Code compilation events may also be
raised.

Note: The built-in functions gZlobals () and I1ocals () return the current global and local dictionary,
respectively, which may be useful to pass around for use as the second and third argument to exec ().

Note: The default locals act as described for function 1ocals () below: modifications to the default locals
dictionary should not be attempted. Pass an explicit locals dictionary if you need to see effects of the code on
locals after function exec () returns.

filter (function, iterable)

clas

Construct an iterator from those elements of iterable for which function returns true. iterable may be either
a sequence, a container which supports iteration, or an iterator. If function is None, the identity function is
assumed, that is, all elements of iterable that are false are removed.

Note that filter (function, iterable) is equivalent to the generator expression (item for
item in iterable if function (item)) if function is not None and (item for item in
iterable if item) if function is None.

See itertools.filterfalse () for the complementary function that returns elements of iterable for
which function returns false.

s float ([x])
Return a floating point number constructed from a number or string x.

If the argument is a string, it should contain a decimal number, optionally preceded by a sign, and optionally
embedded in whitespace. The optional sign may be '+' or '—"'; a '+' sign has no effect on the value
produced. The argument may also be a string representing a NaN (not-a-number), or a positive or negative
infinity. More precisely, the input must conform to the following grammar after leading and trailing whitespace
characters are removed:

Slgn e "+" | nwn_mn

infinity = "Infinity" | "inf"

nan = "nan"

numeric_value = floatnumber | infinity | nan
numeric_string = [sign] numeric_value

Here £ 1loatnumber is the form of a Python floating-point literal, described in floating. Case is not significant,
so, for example, “inf”, “Inf”, “INFINITY” and “iNfINity” are all acceptable spellings for positive infinity.

Otherwise, if the argument is an integer or a floating point number, a floating point number with the same
value (within Python’s floating point precision) is returned. If the argument is outside the range of a Python
float, an OverflowError will be raised.

For a general Python object x, f1oat (x) delegatestox.___float__ ().If __float__ () isnotdefined
then it falls back to __index__ ().

If no argument is given, 0. 0 is returned.

Examples:

>>> float ('+1.23")
1.23
>>> float (' -12345\n")

(continues on next page)

11

The Python Library Reference, Release 3.8.20

(continued from previous page)

-12345.0

>>> float ('1e-003")
0.001

>>> float ('+1E6")
1000000.0

>>> float ('-Infinity'")
—-inf

The float type is described in Numeric Types — int, float, complex.

Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.
Changed in version 3.7: x is now a positional-only parameter.

Changed in version 3.8: Falls back to __index__ () if _ _float__ () is not defined.

format (value[, f()rmat_spec])
Convert a value to a “formatted” representation, as controlled by format_spec. The interpretation of for-
mat_spec will depend on the type of the value argument, however there is a standard formatting syntax that is
used by most built-in types: Format Specification Mini-Language.

The default format_spec is an empty string which usually gives the same effect as calling st r (value).

A call to format (value, format_spec) istranslated to type (value) ._ format__ (value,
format_spec) which bypasses the instance dictionary when searching for the value’s __format__ ()
method. A TypeError exception is raised if the method search reaches ob ject and the format_spec is
non-empty, or if either the format_spec or the return value are not strings.

Changed in version 3.4: object () .__format__ (format_spec) raises TypeError if format_spec
is not an empty string.

class frozenset ([iterable])
Return a new frozenset object, optionally with elements taken from iterable. frozenset is a built-in
class. See frozenset and Set Types — set, frozenset for documentation about this class.

For other containers see the built-in set, 1ist, tuple, and dict classes, as well as the collections
module.

getattr (object, name[, default])
Return the value of the named attribute of object. name must be a string. If the string is the name of one
of the object’s attributes, the result is the value of that attribute. For example, getattr (x, 'foobar')
is equivalent to x . foobar. If the named attribute does not exist, default is returned if provided, otherwise
AttributeError is raised.

globals ()
Return a dictionary representing the current global symbol table. This is always the dictionary of the current
module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr (object, name)
The arguments are an object and a string. The result is True if the string is the name of one of the object’s
attributes, False if not. (This is implemented by calling getattr (object, name) and seeing whether
it raises an At t ributeError or not.)

hash (object)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly compare
dictionary keys during a dictionary lookup. Numeric values that compare equal have the same hash value (even
if they are of different types, as is the case for 1 and 1.0).

Note: For objects with custom __hash__ () methods, note that hash () truncates the return value based
on the bit width of the host machine. See _ _hash__ () for details.

12 Chapter 2. Built-in Functions

The Python Library Reference, Release 3.8.20

help ([object])
Invoke the built-in help system. (This function is intended for interactive use.) If no argument is given, the
interactive help system starts on the interpreter console. If the argument is a string, then the string is looked up
as the name of a module, function, class, method, keyword, or documentation topic, and a help page is printed
on the console. If the argument is any other kind of object, a help page on the object is generated.

Note that if a slash(/) appears in the parameter list of a function, when invoking help (), it means that
the parameters prior to the slash are positional-only. For more info, see the FAQ entry on positional-only
parameters.

This function is added to the built-in namespace by the site module.

Changed in version 3.4: Changes to pydoc and inspect mean that the reported signatures for callables are
now more comprehensive and consistent.

hex (x)
Convert an integer number to a lowercase hexadecimal string prefixed with “0x”. If x is not a Python int
object, it has to define an ___index__ () method that returns an integer. Some examples:

>>> hex (255)
'Oxff!’

>>> hex (-42)
'-0x2a'’

If you want to convert an integer number to an uppercase or lower hexadecimal string with prefix or not, you
can use either of the following ways:

>>> ! ''% 255, " ''% 255, ! !
('Oxff', 'ff', 'FF'")

>>> format (255, '#x'), format (255, 'x'), format (255, 'X")
('Oxff', 'ff', 'FF'")

>>> f'{255:4x}', £'{255:x}', f£'{255:X}"'

('oxff', 'f£f', 'FEF')

o\

255

o\

See also format () for more information.

See also int () for converting a hexadecimal string to an integer using a base of 16.

Note: To obtain a hexadecimal string representation for a float, use the f1oat . hex () method.

id (object)
Return the “identity” of an object. This is an integer which is guaranteed to be unique and constant for this
object during its lifetime. Two objects with non-overlapping lifetimes may have the same id () value.

CPython implementation detail: This is the address of the object in memory.
Raises an auditing event builtins. id with argument id.

input ([prompt])
If the prompt argument is present, it is written to standard output without a trailing newline. The function then
reads a line from input, converts it to a string (stripping a trailing newline), and returns that. When EOF is
read, EOFError is raised. Example:

>>> s = input('-—-> ")
—-—> Monty Python's Flying Circus
>>> s

"Monty Python's Flying Circus"

If the readline module was loaded, then i nput () will use it to provide elaborate line editing and history
features.

Raises an auditing event builtins.input with argument prompt before reading input

Raises an auditing event builtins.input/result with the result after successfully reading input.

13

The Python Library Reference, Release 3.8.20

class int ([x])
class int (x, base=10)

Return an integer object constructed from a number or string x, or return 0 if no arguments are given.
If x defines __int__ (), int (x) returns x.__int__ (). If x defines _ index__ (), it returns x.
__index__ (). If x defines __trunc__ (), itreturns x.__trunc__ (). For floating point numbers,
this truncates towards zero.

If x is not a number or if base is given, then x must be a string, bytes, or bytearray instance representing
an integer literal in radix base. Optionally, the literal can be preceded by + or — (with no space in between)
and surrounded by whitespace. A base-n literal consists of the digits O to n-1, with a to z (or A to Z) having
values 10 to 35. The default base is 10. The allowed values are 0 and 2-36. Base-2, -8, and -16 literals can be
optionally prefixed with 0b/0B, 00/00, or 0x/0X, as with integer literals in code. Base 0 means to interpret
exactly as a code literal, so that the actual base is 2, 8, 10, or 16, and so that int ('010"', 0) is not legal,
while int ('010") is,aswellas int ('010"', 8).

The integer type is described in Numeric Types — int, float, complex.

Changed in version 3.4: If base is not an instance of int and the base object has a base._ _index_
method, that method is called to obtain an integer for the base. Previous versions used base.__int
instead of base.__index_ .

Changed in version 3.6: Grouping digits with underscores as in code literals is allowed.
Changed in version 3.7: x is now a positional-only parameter.
Changed in version 3.8: Falls back to __index__ () if __int__ () is not defined.

Changed in version 3.8.14: int string inputs and string representations can be limited to help avoid denial of
service attacks. A ValueError is raised when the limit is exceeded while converting a string x to an int or
when converting an int into a string would exceed the limit. See the infeger string conversion length limitation
documentation.

isinstance (object, classinfo)

Return True if the object argument is an instance of the classinfo argument, or of a (direct, indirect or virfual)
subclass thereof. If object is not an object of the given type, the function always returns False. If classinfo
is a tuple of type objects (or recursively, other such tuples), return True if object is an instance of any of the
types. If classinfo is not a type or tuple of types and such tuples, a TypeError exception is raised.

issubclass (class, classinfo)

Return True if class is a subclass (direct, indirect or virfual) of classinfo. A class is considered a subclass of
itself. classinfo may be a tuple of class objects, in which case every entry in classinfo will be checked. In any
other case, a TypeError exception is raised.

iter (object[, sentinel])

Return an iferator object. The first argument is interpreted very differently depending on the presence of the
second argument. Without a second argument, object must be a collection object which supports the itera-
tion protocol (the __iter__ () method), or it must support the sequence protocol (the __getitem__ ()
method with integer arguments starting at 0). If it does not support either of those protocols, TypeError is
raised. If the second argument, sentinel, is given, then object must be a callable object. The iterator created in
this case will call object with no arguments for each call toits ___next___ () method; if the value returned is
equal to sentinel, St opIterat ion will be raised, otherwise the value will be returned.

See also Iterator Types.

One useful application of the second form of iter () is to build a block-reader. For example, reading fixed-
width blocks from a binary database file until the end of file is reached:

from functools import partial
with open ('mydata.db', 'rb') as f:
for block in iter (partial(f.read, 64), b''"):
process_block (block)

len (s)

Return the length (the number of items) of an object. The argument may be a sequence (such as a string, bytes,
tuple, list, or range) or a collection (such as a dictionary, set, or frozen set).

14

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.8.20

class list ([iterable])
Rather than being a function, 11 st is actually a mutable sequence type, as documented in Lists and Sequence
Types — list, tuple, range.

locals ()
Update and return a dictionary representing the current local symbol table. Free variables are returned by
locals () when it is called in function blocks, but not in class blocks. Note that at the module level,
locals () and globals () are the same dictionary.

Note: The contents of this dictionary should not be modified; changes may not affect the values of local and
free variables used by the interpreter.

map (function, iterable, ...)
Return an iterator that applies function to every item of iterable, yielding the results. If additional iterable
arguments are passed, function must take that many arguments and is applied to the items from all iterables
in parallel. With multiple iterables, the iterator stops when the shortest iterable is exhausted. For cases where
the function inputs are already arranged into argument tuples, see i tertools.starmap ().

max (iterable, *[, key, default])
max (argl, arg2, *args[, key])
Return the largest item in an iterable or the largest of two or more arguments.

If one positional argument is provided, it should be an iferable. The largest item in the iterable is returned. If
two or more positional arguments are provided, the largest of the positional arguments is returned.

There are two optional keyword-only arguments. The key argument specifies a one-argument ordering function
like that used for 1ist . sort (). The default argument specifies an object to return if the provided iterable
is empty. If the iterable is empty and default is not provided, a ValueError is raised.

If multiple items are maximal, the function returns the first one encountered. This is consistent with other
sort-stability preserving tools such as sorted (iterable, key=keyfunc, reverse=True) [0]
and heapg.nlargest (1, iterable, key=keyfunc).

New in version 3.4: The default keyword-only argument.
Changed in version 3.8: The key can be None.

class memoryview (obj)
Return a “memory view” object created from the given argument. See Memory Views for more information.

min (iterable, *[, key, default])
min (argl, arg2, *args[, key])
Return the smallest item in an iterable or the smallest of two or more arguments.

If one positional argument is provided, it should be an iterable. The smallest item in the iterable is returned.
If two or more positional arguments are provided, the smallest of the positional arguments is returned.

There are two optional keyword-only arguments. The key argument specifies a one-argument ordering function
like that used for 1ist.sort (). The default argument specifies an object to return if the provided iterable
is empty. If the iterable is empty and default is not provided, a ValueError is raised.

If multiple items are minimal, the function returns the first one encountered. This is consistent with
other sort-stability preserving tools such as sorted (iterable, key=keyfunc) [0] and heapq.
nsmallest (1, iterable, key=keyfunc).

New in version 3.4: The default keyword-only argument.
Changed in version 3.8: The key can be None.

next (iterator[, default])
Retrieve the next item from the iterator by calling its ___next___ () method. If default is given, it is returned
if the iterator is exhausted, otherwise StopIteration is raised.

15

The Python Library Reference, Release 3.8.20

class object

Return a new featureless object. object is a base for all classes. It has the methods that are common to all
instances of Python classes. This function does not accept any arguments.

Note: object does not have a ___dict__, so you can't assign arbitrary attributes to an instance of the
object class.

oct (x)

Convert an integer number to an octal string prefixed with “00”. The result is a valid Python expression. If x
is not a Python int object, it has to define an __index__ () method that returns an integer. For example:

>>> oct (8)
'0010"

>>> oct (-56)
'-0070"

If you want to convert an integer number to octal string either with prefix “00” or not, you can use either of
the following ways.

>>> ! ‘% 10, ' "% 10

('"0o12', "12")

>>> format (10, '#o0'), format (10, 'o')
('0o12', '12")

>>> f'{10:40}', £'{10:0}"

('0o12", '12")

See also format () for more information.

open (file, mode="r’, buffering=-1, encoding=None, errors=None, newline=None, closefd=True, opener=None)

Open file and return a corresponding file object. If the file cannot be opened, an OSError is raised. See
tut-files for more examples of how to use this function.

file is a path-like object giving the pathname (absolute or relative to the current working directory) of the file
to be opened or an integer file descriptor of the file to be wrapped. (If a file descriptor is given, it is closed
when the returned I/O object is closed, unless closefd is set to False.)

mode is an optional string that specifies the mode in which the file is opened. It defaults to ' r' which means
open for reading in text mode. Other common values are ' w ' for writing (truncating the file if it already exists),
'x ' for exclusive creation and 'a ' for appending (which on some Unix systems, means that all writes append
to the end of the file regardless of the current seek position). In text mode, if encoding is not specified the
encoding used is platform dependent: locale.getpreferredencoding (False) is called to get the
current locale encoding. (For reading and writing raw bytes use binary mode and leave encoding unspecified.)
The available modes are:

Character | Meaning

'r!' open for reading (default)

"w' open for writing, truncating the file first

'x! open for exclusive creation, failing if the file already exists
'a' open for writing, appending to the end of the file if it exists
'b' binary mode

Tt text mode (default)

T+t open for updating (reading and writing)

The default mode is 'r' (open for reading text, synonym of 'rt'). Modes 'w+' and 'w+b' open and
truncate the file. Modes ' r+' and 'r+b' open the file with no truncation.

As mentioned in the Overview, Python distinguishes between binary and text I/O. Files opened in binary mode
(including 'b"' in the mode argument) return contents as byt es objects without any decoding. In text mode

16

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.8.20

(the default, or when 't ' is included in the mode argument), the contents of the file are returned as st r, the
bytes having been first decoded using a platform-dependent encoding or using the specified encoding if given.

There is an additional mode character permitted, 'U"', which no longer has any effect, and is considered
deprecated. It previously enabled universal newlines in text mode, which became the default behaviour in
Python 3.0. Refer to the documentation of the newline parameter for further details.

Note: Python doesn’t depend on the underlying operating system’s notion of text files; all the processing is
done by Python itself, and is therefore platform-independent.

buffering is an optional integer used to set the buffering policy. Pass O to switch buffering off (only allowed in
binary mode), 1 to select line buffering (only usable in text mode), and an integer > 1 to indicate the size in
bytes of a fixed-size chunk buffer. When no buffering argument is given, the default buffering policy works as
follows:

« Binary files are buffered in fixed-size chunks; the size of the buffer is chosen using a heuristic trying to
determine the underlying device’s “block size” and falling back on io. DEFAULT _BUFFER_SIZE.On
many systems, the buffer will typically be 4096 or 8192 bytes long.

« “Interactive” text files (files for which isatty () returns True) use line buffering. Other text files use
the policy described above for binary files.

encoding is the name of the encoding used to decode or encode the file. This should only be used in text mode.
The default encoding is platform dependent (whatever locale.getpreferredencoding () returns),
but any text encoding supported by Python can be used. See the codecs module for the list of supported
encodings.

errors is an optional string that specifies how encoding and decoding errors are to be handled—this cannot be
used in binary mode. A variety of standard error handlers are available (listed under Error Handlers), though
any error handling name that has been registered with codecs. register_error () is also valid. The
standard names include:

e 'strict' toraisea ValueError exception if there is an encoding error. The default value of None
has the same effect.

e 'ignore' ignores errors. Note that ignoring encoding errors can lead to data loss.
e 'replace' causes areplacement marker (such as ' ? ') to be inserted where there is malformed data.

e 'surrogateescape' will represent any incorrect bytes as code points in the Unicode Private Use
Area ranging from U+DC80 to U+DCFF. These private code points will then be turned back into the
same bytes when the surrogateescape error handler is used when writing data. This is useful for
processing files in an unknown encoding.

e 'xmlcharrefreplace' is only supported when writing to a file. Characters not supported by the
encoding are replaced with the appropriate XML character reference & #nnn; .

e 'backslashreplace' replaces malformed data by Python’s backslashed escape sequences.

e 'namereplace' (also only supported when writing) replaces unsupported characters with \N{ . . . }
escape sequences.

newline controls how universal newlines mode works (it only applies to text mode). It can be None, ' ', '\n"',
"\r',and '\r\n"'. It works as follows:

o When reading input from the stream, if newline is None, universal newlines mode is enabled. Lines in
the inputcanendin '\n', "\r',or '\r\n', and these are translated into ' \n ' before being returned
to the caller. If it is ' ', universal newlines mode is enabled, but line endings are returned to the caller
untranslated. If it has any of the other legal values, input lines are only terminated by the given string,
and the line ending is returned to the caller untranslated.

o When writing output to the stream, if newline is None, any ' \n' characters written are translated to
the system default line separator, os. Iinesep. If newlineis ' ' or '\n', no translation takes place.
If newline is any of the other legal values, any ' \n' characters written are translated to the given string.

17

The Python Library Reference, Release 3.8.20

If closefd is False and a file descriptor rather than a filename was given, the underlying file descriptor will
be kept open when the file is closed. If a filename is given closefd must be True (the default) otherwise an
error will be raised.

A custom opener can be used by passing a callable as opener. The underlying file descriptor for the file object is
then obtained by calling opener with (file, flags). opener must return an open file descriptor (passing os . open
as opener results in functionality similar to passing None).

The newly created file is non-inheritable.

The following example uses the dir_fd parameter of the os . open () function to open a file relative to a given
directory:

>>> import os
>>> dir_fd = os.open('somedir', os.O_RDONLY)
>>> def opener (path, flags):
return os.open (path, flags, dir_fd=dir_f£fd)
>>> with open('spamspam.txt', 'w', opener=opener) as f:
print ('This will be written to somedir/spamspam.txt', file=f)

>>> os.close (dir_fd) # don't leak a file descriptor

The type of file object returned by the open () function depends on the mode. When open () is used
to open a file in a text mode ('w', 'r', 'wt', 'rt', etc.), it returns a subclass of io. TextIOBase
(specifically i 0. Text TOWrapper). When used to open a file in a binary mode with buffering, the returned
class is a subclass of i0.BufferedIOBase. The exact class varies: in read binary mode, it returns an
io.BufferedReader;in write binary and append binary modes, it returns an io.Bufferediriter,
and in read/write mode, it returns an io.BufferedRandom. When buffering is disabled, the raw stream,
asubclass of 10.RawIOBase, io.FileIO, isreturned.

See also the file handling modules, such as, fileinput, io (where open () is declared), os, os.path,
tempfile,and shutil.

Raises an auditing event open with arguments £ile, mode, flags.
The mode and £1lags arguments may have been modified or inferred from the original call.
Changed in version 3.3:
o The opener parameter was added.
o The 'x' mode was added.
e TOError used to be raised, it is now an alias of OSError.
e FileExistsError is now raised if the file opened in exclusive creation mode ('x ") al-
ready exists.
Changed in version 3.4:

¢ The file is now non-inheritable.

Deprecated since version 3.4, will be removed in version 3.9: The 'U' mode.
Changed in version 3.5:

« If the system call is interrupted and the signal handler does not raise an exception, the function
now retries the system call instead of raising an TnterruptedError exception (see PEP
475 for the rationale).

e The 'namereplace"' error handler was added.

Changed in version 3.6:

« Support added to accept objects implementing os. PathLike.

18

Chapter 2. Built-in Functions

https://www.python.org/dev/peps/pep-0475
https://www.python.org/dev/peps/pep-0475

The Python Library Reference, Release 3.8.20

« On Windows, opening a console buffer may return a subclass of i 0. RawIOBase other than
io.FileIO.

ord (c)
Given a string representing one Unicode character, return an integer representing the Unicode code point of
that character. For example, ord ('a"') returns the integer 97 and ord ('€"') (Euro sign) returns 8364.
This is the inverse of chr ().

pow (base, exp[, mod])
Return base to the power exp; if mod is present, return base to the power exp, modulo mod (computed more
efficiently than pow (base, exp) % mod). The two-argument form pow (base, exp) isequivalent to
using the power operator: base* *exp.

The arguments must have numeric types. With mixed operand types, the coercion rules for binary arithmetic
operators apply. For int operands, the result has the same type as the operands (after coercion) unless the
second argument is negative; in that case, all arguments are converted to float and a float result is delivered.
For example, 10**2 returns 100, but 10**-2 returns 0.01.

For int operands base and exp, if mod is present, mod must also be of integer type and mod must be nonzero.
If mod is present and exp is negative, base must be relatively prime to mod. In that case, pow (inv_base,
—exp, mod) is returned, where inv_base is an inverse to base modulo mod.

Here’s an example of computing an inverse for 38 modulo 97:

>>> pow (38, -1, mod=97)
23

>>> 23 * 38 % 97 == 1
True

Changed in version 3.8: For int operands, the three-argument form of pow now allows the second argument
to be negative, permitting computation of modular inverses.

Changed in version 3.8: Allow keyword arguments. Formerly, only positional arguments were supported.

print (*objects, sep="", end="\n’, file=sys.stdout, flush=False)
Print objects to the text stream file, separated by sep and followed by end. sep, end, file and flush, if present,
must be given as keyword arguments.

All non-keyword arguments are converted to strings like st r () does and written to the stream, separated by
sep and followed by end. Both sep and end must be strings; they can also be None, which means to use the
default values. If no objects are given, print () will just write end.

The file argument must be an object with a write (string) method; if it is not present or None, sys.
stdout will be used. Since printed arguments are converted to text strings, print () cannot be used with
binary mode file objects. For these, use file.write (...) instead.

Whether output is buffered is usually determined by file, but if the flush keyword argument is true, the stream
is forcibly flushed.

Changed in version 3.3: Added the flush keyword argument.

class property (fget=None, fset=None, fdel=None, doc=None)
Return a property attribute.

fget is a function for getting an attribute value. fset is a function for setting an attribute value. fdel is a function
for deleting an attribute value. And doc creates a docstring for the attribute.

A typical use is to define a managed attribute x:

class C:
def _ init_ (self):
self._x = None

def getx(self):
return self._x

(continues on next page)

19

The Python Library Reference, Release 3.8.20

(continued from previous page)

def setx(self, wvalue):
self. _x = value

def delx (self):
del self._x

x = property(getx, setx, delx, "I'm the 'x' property.")

If ¢ is an instance of C, c . x will invoke the getter, c.x = wvalue will invoke the setter and del c.x the
deleter.

If given, doc will be the docstring of the property attribute. Otherwise, the property will copy fger’s docstring
(if it exists). This makes it possible to create read-only properties easily using property () as a decorator:

class Parrot:
def _ _init_ (self):
self._voltage = 100000

@property

def voltage(self):
"""Get the current voltage."""
return self._voltage

The @property decorator turns the voltage () method into a “getter” for a read-only attribute with the
same name, and it sets the docstring for voltage to “Get the current voltage.”

A property object has getter, setter, and deleter methods usable as decorators that create a copy of
the property with the corresponding accessor function set to the decorated function. This is best explained
with an example:

class C:
def _ init_ (self):
self. x = None

@property

def x(self):
"""I'm the 'x' property.
return self._x

mrn

@x.setter
def x(self, wvalue):

self. x = value
@x.deleter
def x(self):

del self._x

This code is exactly equivalent to the first example. Be sure to give the additional functions the same name as
the original property (x in this case.)

The returned property object also has the attributes fget, fset, and fdel corresponding to the constructor
arguments.

Changed in version 3.5: The docstrings of property objects are now writeable.

class range (stop)
class range (start, stop[, step])

Rather than being a function, range is actually an immutable sequence type, as documented in Ranges and
Sequence Types — list, tuple, range.

repr (object)

Return a string containing a printable representation of an object. For many types, this function makes an

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.8.20

attempt to return a string that would yield an object with the same value when passed to eval (), otherwise
the representation is a string enclosed in angle brackets that contains the name of the type of the object together
with additional information often including the name and address of the object. A class can control what this
function returns for its instances by defininga ___repr__ () method.

reversed (seq)
Return a reverse iferator. seq must be an object which has a _ _reversed__ () method or supports the
sequence protocol (the _ len_ () method and the _ getitem__ () method with integer arguments
starting at 0).

round (number[, ndigits])
Return number rounded to ndigits precision after the decimal point. If ndigits is omitted or is None, it returns
the nearest integer to its input.

For the built-in types supporting round (), values are rounded to the closest multiple of 10 to the power
minus ndigits; if two multiples are equally close, rounding is done toward the even choice (so, for example,
both round (0.5) and round (-0.5) are 0,and round (1.5) is 2). Any integer value is valid for ndigits
(positive, zero, or negative). The return value is an integer if ndigits is omitted or None. Otherwise the return
value has the same type as number.

For a general Python object number, round delegates to number.___round_ .

Note: The behavior of round () for floats can be surprising: for example, round (2.675, 2) gives
2. 67 instead of the expected 2 . 68. This is not a bug: it’s a result of the fact that most decimal fractions can’t
be represented exactly as a float. See tut-fp-issues for more information.

class set ([iterable])
Return a new set object, optionally with elements taken from iterable. set is a built-in class. See set and
Set Types — set, frozenset for documentation about this class.

For other containers see the built-in frozenset, list, tuple, and dict classes, as well as the
collections module.

setattr (object, name, value)
This is the counterpart of getattr (). The arguments are an object, a string and an arbitrary value. The
string may name an existing attribute or a new attribute. The function assigns the value to the attribute, provided
the object allows it. For example, setattr (x, 'foobar', 123) isequivalenttox.foobar = 123.

class slice (stop)

class slice (start, stop[, step])
Return a slice object representing the set of indices specified by range (start, stop, step). Thestart
and step arguments default to None. Slice objects have read-only data attributes start, stop and step
which merely return the argument values (or their default). They have no other explicit functionality; however
they are used by Numerical Python and other third party extensions. Slice objects are also generated when
extended indexing syntax is used. For example: a [start:stop:step] ora[start:stop, 1i]. See
itertools.islice () for an alternate version that returns an iterator.

sorted (iterable, *, key=None, reverse=False)
Return a new sorted list from the items in iterable.

Has two optional arguments which must be specified as keyword arguments.

key specifies a function of one argument that is used to extract a comparison key from each element in iterable
(for example, key=str.lower). The default value is None (compare the elements directly).

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were reversed.
Use functools.cmp_to_key () to convert an old-style cmp function to a key function.

The built-in sorted () function is guaranteed to be stable. A sort is stable if it guarantees not to change the
relative order of elements that compare equal — this is helpful for sorting in multiple passes (for example, sort
by department, then by salary grade).

For sorting examples and a brief sorting tutorial, see sortinghowto.

21

The Python Library Reference, Release 3.8.20

@staticmethod

Transform a method into a static method.

A static method does not receive an implicit first argument. To declare a static method, use this idiom:

class C:
@staticmethod
def f(argl, arg2, ...):

The @staticmethod form is a function decorator — see function for details.
A static method can be called either on the class (such as C. £ ()) or on an instance (suchas C () . £ ()).

Static methods in Python are similar to those found in Java or C++. Also see classmethod () for a variant
that is useful for creating alternate class constructors.

Like all decorators, it is also possible to call stat icmethod as a regular function and do something with its
result. This is needed in some cases where you need a reference to a function from a class body and you want
to avoid the automatic transformation to instance method. For these cases, use this idiom:

class C:
builtin_open = staticmethod (open)

For more information on static methods, see types.

class str (object=")
class str (object=b", encoding="utf-8’, errors=>strict’)

Return a st r version of object. See st r () for details.

str is the built-in string class. For general information about strings, see Text Sequence Type — str.

sum (iterable, /, start=0)

Sums start and the items of an iterable from left to right and returns the total. The iterable’s items are normally
numbers, and the start value is not allowed to be a string.

For some use cases, there are good alternatives to sum (). The preferred, fast way to concatenate a sequence
of strings is by calling ' ' . join (sequence). To add floating point values with extended precision, see
math. fsum (). To concatenate a series of iterables, consider using i tertools.chain ().

Changed in version 3.8: The start parameter can be specified as a keyword argument.

super ([type[, object-or-type]])

Return a proxy object that delegates method calls to a parent or sibling class of #ype. This is useful for accessing
inherited methods that have been overridden in a class.

The object-or-type determines the method resolution order to be searched. The search starts from the class right
after the type.

For example, if __mro___ of object-or-typeisD -> B —> C -> A —> object and the value of rype
is B, then super () searches C —> A —-> object.

The _ _mro__ attribute of the object-or-type lists the method resolution search order used by both

getattr () and super (). The attribute is dynamic and can change whenever the inheritance hierarchy is
updated.

If the second argument is omitted, the super object returned is unbound. If the second argument is an object,
isinstance (obj, type) must be true. If the second argument is a type, issubclass (type?2,
type) must be true (this is useful for classmethods).

There are two typical use cases for super. In a class hierarchy with single inheritance, super can be used to refer
to parent classes without naming them explicitly, thus making the code more maintainable. This use closely
parallels the use of super in other programming languages.

The second use case is to support cooperative multiple inheritance in a dynamic execution environment. This
use case is unique to Python and is not found in statically compiled languages or languages that only support
single inheritance. This makes it possible to implement “diamond diagrams” where multiple base classes im-
plement the same method. Good design dictates that such implementations have the same calling signature in

22

Chapter 2. Built-in Functions

The Python Library Reference, Release 3.8.20

every case (because the order of calls is determined at runtime, because that order adapts to changes in the
class hierarchy, and because that order can include sibling classes that are unknown prior to runtime).

For both use cases, a typical superclass call looks like this:

class C(B):
def method(self, arg):
super () .method (arg) # This does the same thing as:
super (C, self).method(arg)

In addition to method lookups, super () also works for attribute lookups. One possible use case for this is
calling descriptors in a parent or sibling class.

Note that super () is implemented as part of the binding process for explicit dotted attribute lookups such
as super () .__getitem__ (name). It does so by implementing its own __getattribute__ ()
method for searching classes in a predictable order that supports cooperative multiple inheritance. Accord-
ingly, super () is undefined for implicit lookups using statements or operators such as super () [name].

Also note that, aside from the zero argument form, super () is not limited to use inside methods. The two
argument form specifies the arguments exactly and makes the appropriate references. The zero argument form
only works inside a class definition, as the compiler fills in the necessary details to correctly retrieve the class
being defined, as well as accessing the current instance for ordinary methods.

For practical suggestions on how to design cooperative classes using super (), see guide to using super().

class tuple ([iterable])
Rather than being a function, tuple is actually an immutable sequence type, as documented in Tuples and
Sequence Types — list, tuple, range.

class type (object)

class type (name, bases, dict, **kwds)
With one argument, return the type of an object. The return value is a type object and generally the same object
as returned by object.___class__.

The isinstance () built-in function is recommended for testing the type of an object, because it takes
subclasses into account.

With three arguments, return a new type object. This is essentially a dynamic form of the class statement.
The name string is the class name and becomes the __name___ attribute. The bases tuple contains the base
classes and becomes the ___bases___ attribute; if empty, ob ject, the ultimate base of all classes, is added.
The dict dictionary contains attribute and method definitions for the class body; it may be copied or wrapped
before becoming the ___dict___ attribute. The following two statements create identical ¢ ype objects:

>>> class X:
a =1

>>> X = type ('X', (), dict(a=1))

See also Type Objects.

Keyword arguments provided to the three argument form are passed to the appropriate metaclass machinery
(usually __init_subclass__ ()) in the same way that keywords in a class definition (besides metaclass)
would.

See also class-customization.

Changed in version 3.6: Subclasses of ¢ ype which don’t override type._ new__ may no longer use the
one-argument form to get the type of an object.

vars ([object])
Returnthe dict__ attribute for a module, class, instance, or any other object witha ___dict___ attribute.

Objects such as modules and instances have an updateable _ dict__ attribute; however, other ob-
jects may have write restrictions on their _ dict__ attributes (for example, classes use a types.
MappingProxyType to prevent direct dictionary updates).

23

https://rhettinger.wordpress.com/2011/05/26/super-considered-super/

The Python Library Reference, Release 3.8.20

Without an argument, vars () acts like Jocals (). Note, the locals dictionary is only useful for reads since
updates to the locals dictionary are ignored.

A TypeError exception is raised if an object is specified but it doesn’t have a __dict__ attribute (for
example, if its class defines the __slots__ attribute).

zip (*iterables)

Make an iterator that aggregates elements from each of the iterables.

Returns an iterator of tuples, where the i-th tuple contains the i-th element from each of the argument sequences
or iterables. The iterator stops when the shortest input iterable is exhausted. With a single iterable argument,
it returns an iterator of 1-tuples. With no arguments, it returns an empty iterator. Equivalent to:

def zip(*iterables):
zip('ABCD', 'xy') —--> Ax By
sentinel = object ()
iterators = [iter (it) for it in iterables]
while iterators:
result = []
for it in iterators:
elem = next (it, sentinel)
if elem is sentinel:
return
result.append(elem)
yield tuple (result)

The left-to-right evaluation order of the iterables is guaranteed. This makes possible an idiom for clustering a
data series into n-length groups using zip (* [iter (s)] *n) . This repeats the same iterator n times so that
each output tuple has the result of n calls to the iterator. This has the effect of dividing the input into n-length
chunks.

zip () should only be used with unequal length inputs when you don’t care about trailing, unmatched values
from the longer iterables. If those values are important, use i1 tertools.zip_longest () instead.

zip () in conjunction with the * operator can be used to unzip a list:

>>> x = [1, 2, 3]
>>> y = [4, 5, 6]
>>> zipped = zip(x, V)

>>> list (zipped)

[(x, 4), (2, 5), (3, 6)]

>>> x2, y2 = zip(*zip(x, vy))

>>> x == list(x2) and y == list (y2)
True

__import__ (name, globals=None, locals=None, fromlist=(), level=0)

Note: This is an advanced function that is not needed in everyday Python programming, unlike import1ib.
import_module ().

This function is invoked by the import statement. It can be replaced (by importing the bui 1t ins module
and assigning to builtins.__import__) in order to change semantics of the import statement, but
doing so is strongly discouraged as it is usually simpler to use import hooks (see PEP 302) to attain the same
goals and does not cause issues with code which assumes the default import implementation is in use. Direct
use of ___import__ () isalso discouraged in favor of importlib. import_module ().

The function imports the module name, potentially using the given globals and locals to determine how to
interpret the name in a package context. The fromlist gives the names of objects or submodules that should be
imported from the module given by name. The standard implementation does not use its locals argument at
all, and uses its globals only to determine the package context of the import statement.

24

Chapter 2. Built-in Functions

https://www.python.org/dev/peps/pep-0302

The Python Library Reference, Release 3.8.20

level specifies whether to use absolute or relative imports. O (the default) means only perform absolute imports.
Positive values for level indicate the number of parent directories to search relative to the directory of the
module calling __import__ () (see PEP 328 for the details).

When the name variable is of the form package .module, normally, the top-level package (the name up
till the first dot) is returned, not the module named by name. However, when a non-empty fromlist argument
is given, the module named by name is returned.

For example, the statement import spam results in bytecode resembling the following code:

spam = __ import__ ('spam', globals(), locals(), [1, 0)

The statement import spam.ham results in this call:

spam = __ import__ ('spam.ham', globals(), locals(), [], 0)

Note how ___import__ () returns the toplevel module here because this is the object that is bound to a name
by the import statement.

On the other hand, the statement from spam.ham import eggs, sausage as saus resultsin

_temp = __import__ ('spam.ham', globals(), locals(), ['eggs', 'sausage']l, 0)
eggs = _temp.eggs
saus = _temp.sausage

Here, the spam.ham module is returned from ___import__ (). From this object, the names to import are
retrieved and assigned to their respective names.

If you simply want to import a module (potentially within a package) by name, use importlib.
import_module ().

Changed in version 3.3: Negative values for level are no longer supported (which also changes the default value
to 0).

25

https://www.python.org/dev/peps/pep-0328

The Python Library Reference, Release 3.8.20

26 Chapter 2. Built-in Functions

CHAPTER
THREE

BUILT-IN CONSTANTS

A small number of constants live in the built-in namespace. They are:

False
The false value of the hooI type. Assignments to False are illegal and raise a SyntaxError.

True
The true value of the bool type. Assignments to True are illegal and raise a SyntaxError.

None
The sole value of the type NoneType. None is frequently used to represent the absence of a value, as when
default arguments are not passed to a function. Assignments to None are illegal and raise a SyntaxError.

NotImplemented
Special value which should be returned by the binary special methods (e.g. __eq (), __ 1t (),
_add___ (), rsub__ (), etc.) to indicate that the operation is not implemented with respect to the

other type; may be returned by the in-place binary special methods (e.g. _ _imul__ (), __iand__ (),
etc.) for the same purpose. Its truth value is true.

Note: When a binary (or in-place) method returns Not Implemented the interpreter will try the
reflected operation on the other type (or some other fallback, depending on the operator). If all at-
tempts return Not Implemented, the interpreter will raise an appropriate exception. Incorrectly return-
ing Not Implemented will result in a misleading error message or the Not Implemented value being
returned to Python code.

See Implementing the arithmetic operations for examples.

Note: NotImplementedError and Not Implemented are not interchangeable, even though they have
similar names and purposes. See Not ImplementedError for details on when to use it.

Ellipsis
The same as the ellipsis literal “. . .”. Special value used mostly in conjunction with extended slicing syntax
for user-defined container data types.

_ _debug___
This constant is true if Python was not started with an —O option. See also the assert statement.

Note: The names None, False, True and ___debug___ cannot be reassigned (assignments to them, even as an
attribute name, raise SyntaxError), so they can be considered “true” constants.

27

The Python Library Reference, Release 3.8.20

3.1 Constants added by the site module

The site module (which is imported automatically during startup, except if the —S command-line option is given)
adds several constants to the built-in namespace. They are useful for the interactive interpreter shell and should not
be used in programs.

quit (code=None)

exit (code=None)
Objects that when printed, print a message like “Use quit() or Ctrl-D (i.e. EOF) to exit”, and when called,
raise SystemEx1t with the specified exit code.

copyright
credits
Objects that when printed or called, print the text of copyright or credits, respectively.

license
Object that when printed, prints the message “Type license() to see the full license text”, and when called,
displays the full license text in a pager-like fashion (one screen at a time).

28 Chapter 3. Built-in Constants

CHAPTER
FOUR

BUILT-IN TYPES

The following sections describe the standard types that are built into the interpreter.
The principal built-in types are numerics, sequences, mappings, classes, instances and exceptions.

Some collection classes are mutable. The methods that add, subtract, or rearrange their members in place, and don’t
return a specific item, never return the collection instance itself but None.

Some operations are supported by several object types; in particular, practically all objects can be compared for
equality, tested for truth value, and converted to a string (with the repr () function or the slightly different st r ()
function). The latter function is implicitly used when an object is written by the print () function.

4.1 Truth Value Testing

Any object can be tested for truth value, for use in an i f or whi 1e condition or as operand of the Boolean operations
below.

By default, an object is considered true unless its class defines either a ___bool__ () method that returns False
ora___len () method that returns zero, when called with the object.' Here are most of the built-in objects
considered false:

o constants defined to be false: None and False.
« zero of any numeric type: 0, 0.0, 0j, Decimal (0),Fraction (0, 1)
o empty sequences and collections: ' ', (), [], {}, set (), range (0)

Operations and built-in functions that have a Boolean result always return 0 or False for false and 1 or True for
true, unless otherwise stated. (Important exception: the Boolean operations or and and always return one of their
operands.)

4.2 Boolean Operations — and, or, not

These are the Boolean operations, ordered by ascending priority:

Operation | Result Notes
X Or y if x is false, then y, else x €))]
x and vy | if xis false, then x, else y 2)
not x if x is false, then True, else False | (3)

Notes:

(1) This is a short-circuit operator, so it only evaluates the second argument if the first one is false.

! Additional information on these special methods may be found in the Python Reference Manual (customization).

29

The Python Library Reference, Release 3.8.20

(2) This is a short-circuit operator, so it only evaluates the second argument if the first one is true.

(3) not has a lower priority than non-Boolean operators, so not a == b is interpreted as not (a == b),
and a == not b isa syntax error.

4.3 Comparisons

There are eight comparison operations in Python. They all have the same priority (which is higher than that of the
Boolean operations). Comparisons can be chained arbitrarily; for example, x < y <= z isequivalentto x < y
and y <= z,except that yis evaluated only once (but in both cases z is not evaluated at all when x < vy is found
to be false).

This table summarizes the comparison operations:

Operation | Meaning

< strictly less than

<= less than or equal

> strictly greater than
>= greater than or equal
== equal

1= not equal

is object identity

is not negated object identity

Objects of different types, except different numeric types, never compare equal. The == operator is always defined
but for some object types (for example, class objects) is equivalent to is. The <, <=, > and >= operators are only
defined where they make sense; for example, they raise a TypeError exception when one of the arguments is a
complex number.

Non-identical instances of a class normally compare as non-equal unless the class defines the __eq__ () method.

Instances of a class cannot be ordered with respect to other instances of the same class, or other types of object,
unless the class defines enough of the methods __1t__ (),__le_ (),__gt__ (),and __ge__ () (in general,
_1t__ () and __eqg__ () are sufficient, if you want the conventional meanings of the comparison operators).

The behavior of the is and is not operators cannot be customized; also they can be applied to any two objects
and never raise an exception.

Two more operations with the same syntactic priority, in and not in, are supported by types that are iterable or
implement the __contains__ () method.

4.4 Numeric Types — int, float, complex

There are three distinct numeric types: infegers, floating point numbers, and complex numbers. In addition, Booleans
are a subtype of integers. Integers have unlimited precision. Floating point numbers are usually implemented using
double in C; information about the precision and internal representation of floating point numbers for the machine
on which your program is running is available in sys. f1oat_ info. Complex numbers have a real and imaginary
part, which are each a floating point number. To extract these parts from a complex number z, use z.real and
z . imag. (The standard library includes the additional numeric types fractions.Fraction, for rationals, and
decimal.Decimal, for floating-point numbers with user-definable precision.)

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer
literals (including hex, octal and binary numbers) yield integers. Numeric literals containing a decimal point or an
exponent sign yield floating point numbers. Appending ' j ' or 'J' to a numeric literal yields an imaginary number
(a complex number with a zero real part) which you can add to an integer or float to get a complex number with real
and imaginary parts.

30 Chapter 4. Built-in Types

The Python Library Reference, Release 3.8.20

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric types,
the operand with the “narrower” type is widened to that of the other, where integer is narrower than floating point,
which is narrower than complex. A comparison between numbers of different types behaves as though the exact
values of those numbers were being compared.”

The constructors int (), f1oat (),and complex () can be used to produce numbers of a specific type.

All numeric types (except complex) support the following operations (for priorities of the operations, see operator-
summary):

Operation Result Notes| Full documen-
tation
X +y sum of x and y
X -y difference of x and y
X *y product of x and y
x /vy quotient of x and y
x //y floored quotient of x and y D
X %y remainder of x / y 2)
-x x negated
+x x unchanged
abs (x) absolute value or magnitude of x abs ()
int (x) x converted to integer 3)®6)| int ()
float (x) x converted to floating point @) 6)| float ()
complex (re, a complex number with real part re, imaginary part im. im | (6) complex ()
im) defaults to zero.
c. conjugate of the complex number ¢
conjugate ()
divmod (x, V) the pair (x // vy, x % y) 2) divmod ()
pow (X, V) X to the power y 5) pow ()
X ** y X to the power y (®)]
Notes:

(1) Also referred to as integer division. The resultant value is a whole integer, though the result’s type is not
necessarily int. The result is always rounded towards minus infinity: 1//2is 0, (-=1) //2is=1,1// (-2)
is-1,and (-1)// (-2) is O.

(2) Not for complex numbers. Instead convert to floats using abs () if appropriate.

(3) Conversion from floating point to integer may round or truncate as in C; see functions math. f1oor () and
math.ceil () for well-defined conversions.

(4) float also accepts the strings “nan” and “inf” with an optional prefix “+” or “-” for Not a Number (NaN) and
positive or negative infinity.

(5) Python defines pow (0, 0) and 0 ** 0 to be 1, as is common for programming languages.

(6) The numeric literals accepted include the digits O to 9 or any Unicode equivalent (code points with the Nd
property).

See http://www.unicode.org/Public/12.1.0/ucd/extracted/DerivedNumericType.txt for a complete list of code
points with the Nd property.

All numbers.Real types (int and £1oat) also include the following operations:

Operation Result

math.trunc (x) | xtruncated to Tntegral

round (x[, n]) | xrounded to n digits, rounding half to even. If n is omitted, it defaults to O.
math. floor (x) | the greatest Integral <=Xx

math.ceil (x) the least Tntegral >=x

2 Asa consequence, the list [1, 2] is considered equalto [1.0, 2.0], and similarly for tuples.

4.4. Numeric Types — int, float, complex 31

http://www.unicode.org/Public/12.1.0/ucd/extracted/DerivedNumericType.txt

The Python Library Reference, Release 3.8.20

For additional numeric operations see the math and cmath modules.

4.4.1 Bitwise Operations on Integer Types

Bitwise operations only make sense for integers. The result of bitwise operations is calculated as though carried out
in two’s complement with an infinite number of sign bits.

The priorities of the binary bitwise operations are all lower than the numeric operations and higher than the compar-
isons; the unary operation ~ has the same priority as the other unary numeric operations (+ and —).

This table lists the bitwise operations sorted in ascending priority:

Notes:

Operation | Result Notes
X |y bitwise or of x and y %)

X Ny bitwise exclusive or of xand y | (4)

X &y bitwise and of x and y 4)

x << n x shifted left by n bits (H(©2)
X >> n x shifted right by n bits (H3)
~X the bits of x inverted

(1) Negative shift counts are illegal and cause a ValueError to be raised.

(2) A left shift by #n bits is equivalent to multiplication by pow (2, n).

(3) A right shift by n bits is equivalent to floor division by pow (2, n).

(4) Performing these calculations with at least one extra sign extension bit in a finite two’s complement representa-

tion (a working bit-widthof 1 + max (x.bit_length (), y.bit_length ()) or more) is sufficient
to get the same result as if there were an infinite number of sign bits.

4.4.2 Additional Methods on Integer Types

The int type implements the numbers. Integral abstract base class. In addition, it provides a few more methods:

int.bit_length()

Return the number of bits necessary to represent an integer in binary, excluding the sign and leading zeros:

>>> n = —-37

>>> bin(n)
'-0b100101"

>>> n.bit_length ()
6

More precisely, if x is nonzero, then x.bit_length () is the unique positive integer k such that
2** (k-1) <= abs(x) < 2**k. Equivalently, when abs (x) is small enough to have a correctly
rounded logarithm, then k = 1 + int (log(abs(x), 2)). If xis zero, then x.bit_length ()
returns 0.

Equivalent to:

def bit_length(self):

s = bin(self) # binary representation: bin(-37) --> '-0b100101'
s = s.lstrip('-0b') # remove leading zeros and minus sign
return len(s) # len('100101') ——> 6

New in version 3.1.

32

Chapter 4. Built-in Types

The Python Library Reference, Release 3.8.20

int.to_bytes (length, byteorder, *, signed=False)

Return an array of bytes representing an integer.

>>> (1024) .to_bytes (2, byteorder='big')

b'\x04\x00"

>>> (1024) .to_bytes (10, byteorder='big')
b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00"

>>> (-1024) .to_bytes (10, byteorder='big', signed=True)

b \xfA\XFE\XE\XEA\XEF\XEE\XEE\xEf\xfc\x00"'

>>> x = 1000

>>> x.to_bytes((x.bit_length() + 7) // 8, byteorder='little')
b'\xe8\x03"'

The integer is represented using length bytes. An OverflowError israised if the integer is not representable
with the given number of bytes.

The byteorder argument determines the byte order used to represent the integer. If byteorder is "big", the
most significant byte is at the beginning of the byte array. If byteorderis "1ittle", the most significant byte
is at the end of the byte array. To request the native byte order of the host system, use sys.byteorder as
the byte order value.

The signed argument determines whether two’s complement is used to represent the integer. If signed isFalse
and a negative integer is given, an OverflowError is raised. The default value for signed is False.

New in version 3.2.

classmethod int.from_bytes (bytes, byteorder, *, signed=False)

Return the integer represented by the given array of bytes.

>>> int.from_bytes (b'\x00\x10', byteorder='big'")

16

>>> int.from_bytes (b'\x00\x10', byteorder='little")

4096

>>> int.from_bytes (b'\xfc\x00', byteorder='big', signed=True)
-1024

>>> int.from_bytes (b'\xfc\x00', byteorder='big', signed=False)
64512

>>> int.from_bytes ([255, 0, 0], byteorder='big')

16711680

The argument bytes must either be a bytes-like object or an iterable producing bytes.

The byteorder argument determines the byte order used to represent the integer. If byteorder is "big", the
most significant byte is at the beginning of the byte array. If byteorderis "1itt1le", the most significant byte
is at the end of the byte array. To request the native byte order of the host system, use sys.byteorder as
the byte order value.

The signed argument indicates whether two’s complement is used to represent the integer.

New in version 3.2.

int.as_integer_ratio()

Return a pair of integers whose ratio is exactly equal to the original integer and with a positive denominator.
The integer ratio of integers (whole numbers) is always the integer as the numerator and 1 as the denominator.

New in version 3.8.

4.4. Numeric Types — int, float, complex 33

The Python Library Reference, Release 3.8.20

4.4.3 Additional Methods on Float

The float type implements the numbers . Real abstract base class. float also has the following additional methods.

float.as_integer_ratio()
Return a pair of integers whose ratio is exactly equal to the original float and with a positive denominator.
Raises OverflowError on infinities and a ValueError on NaNs.

float.is_integer ()
Return True if the float instance is finite with integral value, and False otherwise:

>>> (-2.0).is_integer()
True

>>> (3.2).is_integer()
False

Two methods support conversion to and from hexadecimal strings. Since Python’s floats are stored internally as
binary numbers, converting a float to or from a decimal string usually involves a small rounding error. In contrast,
hexadecimal strings allow exact representation and specification of floating-point numbers. This can be useful when
debugging, and in numerical work.

float.hex()
Return a representation of a floating-point number as a hexadecimal string. For finite floating-point numbers,
this representation will always include a leading Ox and a trailing p and exponent.

classmethod float.fromhex (s)
Class method to return the float represented by a hexadecimal string s. The string s may have leading and
trailing whitespace.

Note that f1oat .hex () is an instance method, while fl1oat . fromhex () is a class method.

A hexadecimal string takes the form:

[sign] ['0x'] integer ['.' fraction] ['p' exponent]

where the optional sign may by either + or —, integer and fraction are strings of hexadecimal digits, and
exponent is a decimal integer with an optional leading sign. Case is not significant, and there must be at least one
hexadecimal digit in either the integer or the fraction. This syntax is similar to the syntax specified in section 6.4.4.2
of the C99 standard, and also to the syntax used in Java 1.5 onwards. In particular, the output of f1oat.hex () is
usable as a hexadecimal floating-point literal in C or Java code, and hexadecimal strings produced by C’s $a format
character or Java’s Double.toHexString are accepted by f1oat . fromhex ().

Note that the exponent is written in decimal rather than hexadecimal, and that it gives the power of 2 by which to
multiply the coefficient. For example, the hexadecimal string 0x3 . a7p1 0 represents the floating-point number (3
+ 10./16 + 7./16**2) * 2.0**10,0r 3740.0:

>>> float.fromhex ('0x3.a7pl0")
3740.0

Applying the reverse conversion to 3740 . 0 gives a different hexadecimal string representing the same number:

>>> float.hex (3740.0)
'0x1.d380000000000p+11"

34 Chapter 4. Built-in Types

The Python Library Reference, Release 3.8.20

4.4.4 Hashing of numeric types

For numbers x and vy, possibly of different types, it’s a requirement that hash (x) == hash (y) whenever x
== vy (seethe _ _hash__ () method documentation for more details). For ease of implementation and efficiency
across a variety of numeric types (including int, float, decimal.Decimal and fractions.Fraction)
Python’s hash for numeric types is based on a single mathematical function that’s defined for any rational number,
and hence applies to all instances of int and fractions.Fraction, and all finite instances of f1oat and
decimal.Decimal. Essentially, this function is given by reduction modulo P for a fixed prime P. The value of P
is made available to Python as the modulus attribute of sys.hash_info.

CPython implementation detail: Currently, the prime usedisP = 2**31 - 1 on machines with 32-bit C longs
andP = 2**61 — 1 on machines with 64-bit C longs.

Here are the rules in detail:

e If x = m / n is a nonnegative rational number and n is not divisible by P, define hash (x) as m *
invmod(n, P) % P,where invmod (n, P) gives the inverse of n modulo P.

e« If x = m / n isanonnegative rational number and n is divisible by P (but m is not) then n has no inverse
modulo P and the rule above doesn’t apply; in this case define hash (x) to be the constant value sys.
hash_info.inf.

e If x = m / nisanegative rational number define hash (x) as —hash (—x) . If the resulting hash is -1,
replace it with —2.

o The particular values sys.hash_info.inf, —sys.hash_info.inf and sys.hash_info.nan
are used as hash values for positive infinity, negative infinity, or nans (respectively). (All hashable nans have
the same hash value.)

e For a complex number z, the hash values of the real and imaginary parts are combined by com-
puting hash (z.real) + sys.hash_info.imag * hash(z.imag), reduced modulo 2**sys.
hash_info.width so that it lies in range (-2** (sys.hash_info.width - 1), 2**(sys.
hash_info.width — 1)). Again, if the resultis —1, it’s replaced with —2.

To clarify the above rules, here’s some example Python code, equivalent to the built-in hash, for computing the hash
of a rational number, f1oat, or complex:

import sys, math

def hash_fraction(m, n):
""rncompute the hash of a rational number m / n.

Assumes m and n are integers, with n positive.
Equivalent to hash(fractions.Fraction(m, n)).

meen

P = sys.hash_info.modulus
Remove common factors of P. (Unnecessary if m and n already coprime.)
while m $ P == n % P ==
m, n=m// P, n//P
if n $ P ==
hash_value = sys.hash_info.inf
else:
Fermat's Little Theorem: pow(n, P-1, P) is 1, so
pow(n, P-2, P) gives the inverse of n modulo P.

hash_value = (abs(m) % P) * pow(n, P - 2, P) % P
if m < O:

hash_value = —-hash_value
if hash_value == -1:

hash_value = -2

return hash_value

def hash_float (x):

(continues on next page)

4.4. Numeric Types — int, float, complex 35

The Python Library Reference, Release 3.8.20

(continued from previous page)

"""Compute the hash of a float x."""

if math.isnan (x) :

return sys.hash_info.nan
elif math.isinf (x):

return sys.hash_info.inf if x > 0 else -sys.hash_info.inf
else:

return hash_fraction(*x.as_integer_ratio())

def hash_complex(z):
"""Compute the hash of a complex number z."""
hash_value = hash_float(z.real) + sys.hash_info.imag * hash_float (z.imag)
do a signed reduction modulo 2**sys.hash_info.width
M = 2**(sys.hash_info.width - 1)

hash_value = (hash_value & (M - 1)) - (hash_value & M)
if hash_value == -1:
hash_value = -2

return hash_value

4.5 lterator Types

Python supports a concept of iteration over containers. This is implemented using two distinct methods; these are
used to allow user-defined classes to support iteration. Sequences, described below in more detail, always support
the iteration methods.

One method needs to be defined for container objects to provide iteration support:

container.__iter__ ()
Return an iterator object. The object is required to support the iterator protocol described below. If a container
supports different types of iteration, additional methods can be provided to specifically request iterators for
those iteration types. (An example of an object supporting multiple forms of iteration would be a tree structure
which supports both breadth-first and depth-first traversal.) This method corresponds to the tp_iter slot of
the type structure for Python objects in the Python/C API.

The iterator objects themselves are required to support the following two methods, which together form the iterator
protocol:

iterator.__iter__ ()
Return the iterator object itself. This is required to allow both containers and iterators to be used with the for
and in statements. This method corresponds to the tp_iter slot of the type structure for Python objects in
the Python/C APL.

iterator.__next__ ()
Return the next item from the container. If there are no further items, raise the St opIterat ion exception.
This method corresponds to the t p_iternext slot of the type structure for Python objects in the Python/C
APIL.

Python defines several iterator objects to support iteration over general and specific sequence types, dictionaries,
and other more specialized forms. The specific types are not important beyond their implementation of the iterator
protocol.

Once an iterator’s ___next___ () method raises StopIteration, it must continue to do so on subsequent calls.
Implementations that do not obey this property are deemed broken.

36 Chapter 4. Built-in Types

The Python Library Reference, Release 3.8.20

4.5.1 Generator Types

Python’s generators provide a convenient way to implement the iterator protocol. If a container object’s
__iter__ () method is implemented as a generator, it will automatically return an iterator object (technically,
a generator object) supplying the __iter_ () and _ _next__ () methods. More information about generators
can be found in the documentation for the yield expression.

4.6 Sequence Types — list, tuple, range

There are three basic sequence types: lists, tuples, and range objects. Additional sequence types tailored for process-
ing of binary data and text strings are described in dedicated sections.

4.6.1 Common Sequence Operations

The operations in the following table are supported by most sequence types, both mutable and immutable. The
collections.abc.Sequence ABC is provided to make it easier to correctly implement these operations on
custom sequence types.

This table lists the sequence operations sorted in ascending priority. In the table, s and ¢ are sequences of the same
type, n, i, j and k are integers and x is an arbitrary object that meets any type and value restrictions imposed by s.

The in and not in operations have the same priorities as the comparison operations. The + (concatenation) and
* (repetition) operations have the same priority as the corresponding numeric operations.”

Operation Result Notes
x in s True if an item of s is equal to x, else False (D)

x not in s False if an item of s is equal to x, else True (1)

s + t the concatenation of s and ¢ ©)(7)
S * norn * s equivalent to adding s to itself n times)7
s[1i] ith item of s, origin O 3)
s[i:J] slice of s from i to j 3@
s[i:3:k] slice of s from i to j with step k 3)(5)
len(s) length of s

min (s) smallest item of s

max (s) largest item of s

s.index (x[, 1il, index of the first occurrence of x in s (at or after index i and before index | (8)
j11))

s.count (x) total number of occurrences of x in s

Sequences of the same type also support comparisons. In particular, tuples and lists are compared lexicographically
by comparing corresponding elements. This means that to compare equal, every element must compare equal and the
two sequences must be of the same type and have the same length. (For full details see comparisons in the language
reference.)

Notes:

(1) While the in and not in operations are used only for simple containment testing in the general case, some
specialised sequences (such as st r, bytes and bytearray) also use them for subsequence testing:

>>> llgg" in Heggsﬂ
True

(2) Values of n less than 0 are treated as 0 (which yields an empty sequence of the same type as s). Note that
items in the sequence s are not copied; they are referenced multiple times. This often haunts new Python
programmers; consider:

3 They must have since the parser can't tell the type of the operands.

4.6. Sequence Types — list, tuple, range 37

The Python Library Reference, Release 3.8.20

3)

“4)

(&)

(6)

)

®)

>>> lists = [[]] * 3
>>> lists

[ry, 1, (11

>>> lists[0].append(3)
>>> lists

[e31, 31, [311]

What has happened is that [[]] is a one-element list containing an empty list, so all three elements of [[]]
* 3 are references to this single empty list. Modifying any of the elements of 11 st s modifies this single list.
You can create a list of different lists this way:

>>> lists = [[] for 1 in range(3)]
>>> lists[0].append(3)

>>> lists[1].append(5)

>>> lists[2].append(7)

>>> lists

(31, s1, [711]

Further explanation is available in the FAQ entry fag-multidimensional-list.

If i or j is negative, the index is relative to the end of sequence s: len (s) + 1iorlen(s) + 7 issubsti-
tuted. But note that -0 is still 0.

The slice of s from i to j is defined as the sequence of items with index k suchthat i <= k < j.Ifiorjis
greater than len (s), use len (s). If i is omitted or None, use 0. If j is omitted or None, use len (s).
If i is greater than or equal to j, the slice is empty.

The slice of s from i to j with step k is defined as the sequence of items with index x = 1 + n*k such that
0 <= n < (j-1i) /k. In other words, the indices are i, i+k, 1+2*k, 1+3*k and so on, stopping when
Jj is reached (but never including j). When k is positive, i and j are reduced to len (s) if they are greater.
When £ is negative, i and j are reduced to len (s) - 1 if they are greater. If i or j are omitted or None,
they become “end” values (which end depends on the sign of k). Note, k cannot be zero. If k is None, it is
treated like 1.

Concatenating immutable sequences always results in a new object. This means that building up a sequence by
repeated concatenation will have a quadratic runtime cost in the total sequence length. To get a linear runtime
cost, you must switch to one of the alternatives below:

« if concatenating st r objects, you can build a list and use str. join () at the end or else write to an
io.StringIO instance and retrieve its value when complete

« if concatenating byt es objects, you can similarly use bytes. join () or io.BytesIO,or you can
do in-place concatenation with a bytearray object. bytearray objects are mutable and have an
efficient overallocation mechanism

« if concatenating t uple objects, extend a 1ist instead
« for other types, investigate the relevant class documentation

Some sequence types (such as range) only support item sequences that follow specific patterns, and hence
don’t support sequence concatenation or repetition.

index raises ValueError when x is not found in s. Not all implementations support passing the additional
arguments i and j. These arguments allow efficient searching of subsections of the sequence. Passing the extra
arguments is roughly equivalent to using s [i: 7] .index (x), only without copying any data and with the
returned index being relative to the start of the sequence rather than the start of the slice.

38

Chapter 4. Built-in Types

The Python Library Reference, Release 3.8.20

4.6.2 Immutable Sequence Types
The only operation that immutable sequence types generally implement that is not also implemented by mutable
sequence types is support for the hash () built-in.

This support allows immutable sequences, such as t up1e instances, to be used as di ct keys and stored in set and
frozenset instances.

Attempting to hash an immutable sequence that contains unhashable values will result in TypeError.

4.6.3 Mutable Sequence Types

The operations in the following table are defined on mutable sequence types. The collections.abc.
MutableSequence ABC is provided to make it easier to correctly implement these operations on custom se-
quence types.

In the table s is an instance of a mutable sequence type, 7 is any iterable object and x is an arbitrary object that meets
any type and value restrictions imposed by s (for example, bytearray only accepts integers that meet the value
restriction 0 <= x <= 255).

Operation Result Notes

s[i] = x item i of s is replaced by x

s[i:j] =t slice of s from i to j is replaced by the contents of the iterable ¢

del s[i:7j] sameas s[i:3] = []

s[i:j:k] =t the elements of s [1i:7:k] are replaced by those of ¢ @))

del s[i:j:k] removes the elements of s [i:7:k] from the list

s.append (x) appends x to the end of the sequence (same as s[len(s) :len(s)] =

[x])

s.clear () removes all items from s (same as del s[:]))

s.copy () creates a shallow copy of s (same as s[:]) ®))

s.extend (t) or s | extends s with the contents of ¢ (for the most part the same as

+= t s[len(s):len(s)] = t)

S *=n updates s with its contents repeated n times (6)

s.insert (i, x) inserts x into s at the index given by i (same as s [i:1] = [x])

s .pop () or s. | retrieves the item at i and also removes it from s)

pop (1)

S.remove (X) remove the first item from s where s [1] is equal to x 3)

s.reverse () reverses the items of s in place 4)
Notes:

(1) ¢ must have the same length as the slice it is replacing.
(2) The optional argument i defaults to —1, so that by default the last item is removed and returned.
(3) remove () raises ValueError when x is not found in s.

(4) The reverse () method modifies the sequence in place for economy of space when reversing a large se-
quence. To remind users that it operates by side effect, it does not return the reversed sequence.

(5) clear () and copy () are included for consistency with the interfaces of mutable containers that don’t
support slicing operations (such as dict and set). copy () is not part of the collections.abc.
MutableSequence ABC, but most concrete mutable sequence classes provide it.

New in version 3.3: clear () and copy () methods.

(6) The value n is an integer, or an object implementing ___index__ (). Zero and negative values of x clear the
sequence. Items in the sequence are not copied; they are referenced multiple times, as explained for s * n
under Common Sequence Operations.

4.6. Sequence Types — list, tuple, range 39

The Python Library Reference, Release 3.8.20

4.6.4 Lists

Lists are mutable sequences, typically used to store collections of homogeneous items (where the precise degree of
similarity will vary by application).

class list([itemble])

Lists may be constructed in several ways:
o Using a pair of square brackets to denote the empty list: []
« Using square brackets, separating items with commas: [a], [a, b, c]
» Using a list comprehension: [x for x in iterable]
« Using the type constructor: 1ist () or list (iterable)

The constructor builds a list whose items are the same and in the same order as iterable’s items. iterable may be
either a sequence, a container that supports iteration, or an iterator object. If iterable is already a list, a copy is
made and returned, similarto iterable[:]. Forexample, 1ist ('abc') returns ['a', 'b', 'c']
and 1ist ((1, 2, 3)) returns [1, 2, 3]. If noargument is given, the constructor creates a new
empty list, [].

Many other operations also produce lists, including the sorted () built-in.

Lists implement all of the common and mutable sequence operations. Lists also provide the following additional
method:

sort (*, key=None, reverse=False)
This method sorts the list in place, using only < comparisons between items. Exceptions are not sup-
pressed - if any comparison operations fail, the entire sort operation will fail (and the list will likely be
left in a partially modified state).

sort () accepts two arguments that can only be passed by keyword (keyword-only arguments):

key specifies a function of one argument that is used to extract a comparison key from each list element
(for example, key=str.lower). The key corresponding to each item in the list is calculated once
and then used for the entire sorting process. The default value of None means that list items are sorted
directly without calculating a separate key value.

The functools.cmp_to_key () utility is available to convert a 2.x style cmp function to a key
function.

reverse is a boolean value. If set to True, then the list elements are sorted as if each comparison were
reversed.

This method modifies the sequence in place for economy of space when sorting a large sequence. To
remind users that it operates by side effect, it does not return the sorted sequence (use sorted () to
explicitly request a new sorted list instance).

The sort () method is guaranteed to be stable. A sort is stable if it guarantees not to change the relative
order of elements that compare equal — this is helpful for sorting in multiple passes (for example, sort
by department, then by salary grade).

For sorting examples and a brief sorting tutorial, see sortinghowto.

CPython implementation detail: While a list is being sorted, the effect of attempting to mutate, or
even inspect, the list is undefined. The C implementation of Python makes the list appear empty for the
duration, and raises ValueError if it can detect that the list has been mutated during a sort.

40

Chapter 4. Built-in Types

The Python Library Reference, Release 3.8.20

4.6.5 Tuples

Tuples are immutable sequences, typically used to store collections of heterogeneous data (such as the 2-tuples pro-
duced by the enumerate () built-in). Tuples are also used for cases where an immutable sequence of homogeneous
data is needed (such as allowing storage in a set or dict instance).

class tuple ([iterable])
Tuples may be constructed in a number of ways:

« Using a pair of parentheses to denote the empty tuple: ()

« Using a trailing comma for a singleton tuple: a, or (a,)

o Separating items with commas: a, b, cor (a, b, c)

e Using the tuple () built-in: tuple () or tuple (iterable)

The constructor builds a tuple whose items are the same and in the same order as iterable’s items. iterable may
be either a sequence, a container that supports iteration, or an iterator object. If iferable is already a tuple, it is
returned unchanged. For example, tuple ('abc') returns ('a', 'b', 'c') andtuple([1, 2,
3]) returns (1, 2, 3).If noargument is given, the constructor creates a new empty tuple, ().

Note that it is actually the comma which makes a tuple, not the parentheses. The parentheses are optional,
except in the empty tuple case, or when they are needed to avoid syntactic ambiguity. For example, £ (a, b,
c) is a function call with three arguments, while £ ((a, b, c¢)) is a function call with a 3-tuple as the sole
argument.

Tuples implement all of the common sequence operations.

For heterogeneous collections of data where access by name is clearer than access by index, collections.
namedtuple () may be a more appropriate choice than a simple tuple object.

4.6.6 Ranges

The range type represents an immutable sequence of numbers and is commonly used for looping a specific number
of times in for loops.

class range (stop)

class range (start, stop[, step])
The arguments to the range constructor must be integers (either built-in int or any object that implements
the __index___ special method). If the step argument is omitted, it defaults to 1. If the start argument is
omitted, it defaults to 0. If step is zero, ValueError is raised.

For a positive step, the contents of a range r are determined by the formula r [1i] = start + step*i
where i >= Oandr[i] < stop.

For a negative step, the contents of the range are still determined by the formula r[i] = start +
step*1i, but the constraintsare i >= Oandr[i] > stop.

A range object will be empty if r [0] does not meet the value constraint. Ranges do support negative indices,
but these are interpreted as indexing from the end of the sequence determined by the positive indices.

Ranges containing absolute values larger than sys.maxsize are permitted but some features (such as
len ())may raise OverflowError

Range examples:

>>> list (range (10))

o, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> list (range (1, 11))

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> list (range (0, 30, 5))

[0, 5, 10, 15, 20, 25]

>>> list (range (0, 10, 3))

[0, 3, 6, 9]

(continues on next page)

4.6. Sequence Types — list, tuple, range 41

The Python Library Reference, Release 3.8.20

(continued from previous page)

>>> list (range (0, -10, -1))
[Or _11 _21 _37 _41 _51 _67 _71 _81 _91
>>> list (range (0))

>>> list (range (1, 0))

Ranges implement all of the common sequence operations except concatenation and repetition (due to the fact
that range objects can only represent sequences that follow a strict pattern and repetition and concatenation
will usually violate that pattern).

start
The value of the start parameter (or 0 if the parameter was not supplied)

stop
The value of the sfop parameter

step
The value of the step parameter (or 1 if the parameter was not supplied)

The advantage of the range type over a regular 1 ist or tuple is that a range object will always take the same
(small) amount of memory, no matter the size of the range it represents (as it only stores the start, stop and
step values, calculating individual items and subranges as needed).

Range objects implement the collections.abc.Sequence ABC, and provide features such as containment
tests, element index lookup, slicing and support for negative indices (see Sequence Types — list, tuple, range):

>>> r = range (0, 20, 2)
>>> r

range (0, 20, 2)
>>> 11 in r
False

>>> 10 in r
True

>>> r.index (10)
5

>>> r[5]

10

>>> r[:5]

range (0, 10, 2)
>>> r[-1]

18

Testing range objects for equality with == and != compares them as sequences. That is, two range objects are
considered equal if they represent the same sequence of values. (Note that two range objects that compare equal
might have different start, stop and step attributes, for example range (0) == range (2, 1, 3) or
range (0, 3, 2) == range(0, 4, 2).)

Changed in version 3.2: Implement the Sequence ABC. Support slicing and negative indices. Test int objects for
membership in constant time instead of iterating through all items.

Changed in version 3.3: Define ‘=="and ‘=" to compare range objects based on the sequence of values they define
(instead of comparing based on object identity).

New in version 3.3: The start, stop and step attributes.
See also:

« The linspace recipe shows how to implement a lazy version of range suitable for floating point applications.

42 Chapter 4. Built-in Types

http://code.activestate.com/recipes/579000/

The Python Library Reference, Release 3.8.20

4.7 Text Sequence Type — str

Textual data in Python is handled with st r objects, or strings. Strings are immutable sequences of Unicode code
points. String literals are written in a variety of ways:

« Single quotes: 'allows embedded "double" quotes'
e Double quotes: "allows embedded 'single' quotes".
o Triple quoted: ' ' 'Three single quotes''',"""Three double quotes"""
Triple quoted strings may span multiple lines - all associated whitespace will be included in the string literal.

String literals that are part of a single expression and have only whitespace between them will be implicitly converted
to a single string literal. Thatis, ("spam " "eggs") == "spam eggs".

See strings for more about the various forms of string literal, including supported escape sequences, and the r (“raw”
prefix that disables most escape sequence processing.

Strings may also be created from other objects using the st r constructor.

Since there is no separate “character” type, indexing a string produces strings of length 1. That is, for a non-empty
string s, s[0] == s[0:1].

There is also no mutable string type, but str. join () or io.StringIO can be used to efficiently construct
strings from multiple fragments.

Changed in version 3.3: For backwards compatibility with the Python 2 series, the u prefix is once again permitted
on string literals. It has no effect on the meaning of string literals and cannot be combined with the r prefix.

class str (object=")

class str (object=b", encoding="utf-8’, errors=’strict’)
Return a string version of object. If object is not provided, returns the empty string. Otherwise, the behavior
of str () depends on whether encoding or errors is given, as follows.

If neither encoding nor errors is given, str (object) returns object.__str__ (), which is the “infor-
mal” or nicely printable string representation of object. For string objects, this is the string itself. If object
doesnothavea ___str__ () method, then st r () falls back to returning repr (object).

If at least one of encoding or errors is given, object should be a bytes-like object (e.g. bytesor bytearray).
In this case, if object isa bytes (or bytearray) object, then str (bytes, encoding, errors) is
equivalent to bytes. decode (encoding, errors). Otherwise, the bytes object underlying the buffer
object is obtained before calling bytes.decode (). See Binary Sequence Types — bytes, bytearray, mem-
oryview and bufferobjects for information on buffer objects.

Passing a bytes object to st () without the encoding or errors arguments falls under the first case of
returning the informal string representation (see also the —b command-line option to Python). For example:

>>> str(b'Zoot!")
"blzoot! ™

For more information on the st r class and its methods, see Text Sequence Type — str and the String Methods
section below. To output formatted strings, see the f-strings and Format String Syntax sections. In addition,
see the Text Processing Services section.

4.7. Text Sequence Type — str 43

The Python Library Reference, Release 3.8.20

4.7.1 String Methods

Strings implement all of the common sequence operations, along with the additional methods described below.

Strings also support two styles of string formatting, one providing a large degree of flexibility and customization (see
str.format (), Format String Syntax and Custom String Formatting) and the other based on C printf style
formatting that handles a narrower range of types and is slightly harder to use correctly, but is often faster for the
cases it can handle (printf-style String Formatting).

The Text Processing Services section of the standard library covers a number of other modules that provide various
text related utilities (including regular expression support in the re module).

str.

str

str.

str

capitalize ()
Return a copy of the string with its first character capitalized and the rest lowercased.

Changed in version 3.8: The first character is now put into titlecase rather than uppercase. This means that
characters like digraphs will only have their first letter capitalized, instead of the full character.

.casefold ()

Return a casefolded copy of the string. Casefolded strings may be used for caseless matching.

Casefolding is similar to lowercasing but more aggressive because it is intended to remove all case distinctions
in a string. For example, the German lowercase letter ' 3 ' is equivalent to "ss". Since it is already lowercase,
lower () would do nothing to '3 '; casefold () convertsitto "ss".

The casefolding algorithm is described in section 3.13 of the Unicode Standard.
New in version 3.3.

center (width|, fillchar)
Return centered in a string of length width. Padding is done using the specified fillchar (default is an ASCII
space). The original string is returned if width is less than or equal to 1len (s) .

.count (sub[, start[, end]])

Return the number of non-overlapping occurrences of substring sub in the range [start, end]. Optional argu-
ments start and end are interpreted as in slice notation.

str.encode (encoding="utf-8”, errors="strict”)

Return an encoded version of the string as a bytes object. Default encodingis 'ut £-8"'. errors may be given to
set a different error handling scheme. The default for errorsis ' strict ', meaning that encoding errors raise
a UnicodeError. Other possible values are 'ignore', 'replace’', 'smlcharrefreplace’,
'backslashreplace' and any other name registered via codecs.register_error (), see sec-
tion Error Handlers. For a list of possible encodings, see section Standard Encodings.

Changed in version 3.1: Support for keyword arguments added.

str.endswith (suﬁix[, start[, end]])

Return True if the string ends with the specified suffix, otherwise return False. suffix can also be a tuple of
suffixes to look for. With optional start, test beginning at that position. With optional end, stop comparing at
that position.

str.expandtabs (fabsize=8)

Return a copy of the string where all tab characters are replaced by one or more spaces, depending on the
current column and the given tab size. Tab positions occur every tabsize characters (default is 8, giving tab
positions at columns 0, 8, 16 and so on). To expand the string, the current column is set to zero and the string
is examined character by character. If the character is a tab (\t), one or more space characters are inserted in
the result until the current column is equal to the next tab position. (The tab character itself is not copied.) If
the character is a newline (\n) or return (\r), it is copied and the current column is reset to zero. Any other
character is copied unchanged and the current column is incremented by one regardless of how the character
is represented when printed.

>>> "01\t012\t0123\t01234"' .expandtabs ()

'01 012 0123 01234"
>>> '01\t012\t0123\t01234"' .expandtabs (4)
'01 012 0123 01234"

44

Chapter 4. Built-in Types

The Python Library Reference, Release 3.8.20

str.find (sub[, start[, end]])
Return the lowest index in the string where substring sub is found within the slice s [start :end]. Optional
arguments start and end are interpreted as in slice notation. Return —1 if sub is not found.

Note: The £ind () method should be used only if you need to know the position of sub. To check if sub is
a substring or not, use the in operator:

>>> 'Py' in 'Python'
True

str.format (*args, **kwargs)
Perform a string formatting operation. The string on which this method is called can contain literal text or
replacement fields delimited by braces { }. Each replacement field contains either the numeric index of a
positional argument, or the name of a keyword argument. Returns a copy of the string where each replacement
field is replaced with the string value of the corresponding argument.

>>> "The sum of 1 + 2 1is ".format (1+2)
'The sum of 1 + 2 is 3!

See Format String Syntax for a description of the various formatting options that can be specified in format
strings.

Note: When formatting a number (int, float, complex, decimal.Decimal and subclasses) with
the n type (ex: '{:n}'.format (1234)), the function temporarily sets the LC_CTYPE locale to the
LC_NUMERIC locale to decode decimal_point and thousands_sep fields of localeconv () if
they are non-ASCII or longer than 1 byte, and the LC_NUMERIC locale is different than the LC_CTYPE
locale. This temporary change affects other threads.

Changed in version 3.7: When formatting a number with the n type, the function sets temporarily the
LC_CTYPE locale to the LC_NUMERIC locale in some cases.

str.format_map (mapping)
Similar to str. format (**mapping), except that mapping is used directly and not copied to a dict.
This is useful if for example mapping is a dict subclass:

>>> class Default (dict) :
def _ missing__ (self, key):
return key

>>> ! was born in '.format_map (Default (name="'Guido"))

'Guido was born in country'

New in version 3.2.

str.index (sub[, start[, end]])
Like find (), butraise ValueError when the substring is not found.

str.isalnum()
Return True if all characters in the string are alphanumeric and there is at least one character, False
otherwise. A character c is alphanumeric if one of the following returns True: c.isalpha(), c.
isdecimal (), c.isdigit (),or c.isnumeric().

str.isalpha ()
Return True if all characters in the string are alphabetic and there is at least one character, False otherwise.
Alphabetic characters are those characters defined in the Unicode character database as “Letter”, i.e., those
with general category property being one of “Lm”, “Lt”, “Lu”, “LI”, or “Lo”. Note that this is different from
the “Alphabetic” property defined in the Unicode Standard.

4.7. Text Sequence Type — str 45

The Python Library Reference, Release 3.8.20

str.

str.

str.

str.

str.

str.

str

str.

str.

str.

isascii ()
Return True if the string is empty or all characters in the string are ASCII, False otherwise. ASCII char-
acters have code points in the range U+0000-U+007F.

New in version 3.7.

isdecimal ()

Return True if all characters in the string are decimal characters and there is at least one character, False
otherwise. Decimal characters are those that can be used to form numbers in base 10, e.g. U+0660, ARABIC-
INDIC DIGIT ZERO. Formally a decimal character is a character in the Unicode General Category “Nd”.
isdigit ()

Return True if all characters in the string are digits and there is at least one character, False otherwise.
Digits include decimal characters and digits that need special handling, such as the compatibility superscript
digits. This covers digits which cannot be used to form numbers in base 10, like the Kharosthi numbers.
Formally, a digit is a character that has the property value Numeric_Type=Digit or Numeric_Type=Decimal.

isidentifier ()
Return True if the string is a valid identifier according to the language definition, section identifiers.

Call keyword. iskeyword () to test whether string s is a reserved identifier, such as def and class.

Example:

>>> from keyword import iskeyword

>>> 'hello'.isidentifier (), iskeyword('hello")
True, False

>>> 'def'.isidentifier (), iskeyword('def')
True, True

islower ()
Return True if all cased characters* in the string are lowercase and there is at least one cased character,
False otherwise.

isnumeric ()

Return True if all characters in the string are numeric characters, and there is at least one character, False
otherwise. Numeric characters include digit characters, and all characters that have the Unicode numeric value
property, e.g. U+2155, VULGAR FRACTION ONE FIFTH. Formally, numeric characters are those with the
property value Numeric_Type=Digit, Numeric_Type=Decimal or Numeric_Type=Numeric.

.isprintable ()

Return True if all characters in the string are printable or the string is empty, False otherwise. Nonprintable
characters are those characters defined in the Unicode character database as “Other” or “Separator”, excepting
the ASCII space (0x20) which is considered printable. (Note that printable characters in this context are those
which should not be escaped when repr () is invoked on a string. It has no bearing on the handling of strings
written to sys. stdout or sys.stderr.)

isspace ()
Return True if there are only whitespace characters in the string and there is at least one character, False
otherwise.

A character is whitespace if in the Unicode character database (see unicodedat a), either its general category
is Zs (“Separator, space”), or its bidirectional class is one of WS, B, or S.

istitle ()

Return True if the string is a titlecased string and there is at least one character, for example uppercase
characters may only follow uncased characters and lowercase characters only cased ones. Return False
otherwise.

isupper ()
Return True if all cased characters* in the string are uppercase and there is at least one cased character,
False otherwise.

4 Cased characters are those with general category property being one of “Lu” (Letter, uppercase), “L1” (Letter, lowercase), or “Lt” (Letter,
titlecase).

46

Chapter 4. Built-in Types

The Python Library Reference, Release 3.8.20

str.

str

str.

str

join (iterable)

Return a string which is the concatenation of the strings in iferable. A TypeError will be raised if there
are any non-string values in iterable, including by tes objects. The separator between elements is the string
providing this method.

.1ljust (width[,ﬁllchar])

Return the string left justified in a string of length widrh. Padding is done using the specified fillchar (default
is an ASCII space). The original string is returned if width is less than or equal to len (s).

lower ()
Return a copy of the string with all the cased characters* converted to lowercase.

The lowercasing algorithm used is described in section 3.13 of the Unicode Standard.

.1strip([chars])

Return a copy of the string with leading characters removed. The chars argument is a string specifying the set
of characters to be removed. If omitted or None, the chars argument defaults to removing whitespace. The
chars argument is not a prefix; rather, all combinations of its values are stripped:

>>> ! spacious " 1lstrip()
'spacious !

>>> 'www.example.com'.lstrip('cmowz.")
'example.com'

static str.maketrans (x[, y[, Z]])

str

str.

str

str

str

str.

str.

This static method returns a translation table usable for st r. translate ().

If there is only one argument, it must be a dictionary mapping Unicode ordinals (integers) or characters (strings
of length 1) to Unicode ordinals, strings (of arbitrary lengths) or None. Character keys will then be converted
to ordinals.

If there are two arguments, they must be strings of equal length, and in the resulting dictionary, each character
in x will be mapped to the character at the same position in y. If there is a third argument, it must be a string,
whose characters will be mapped to None in the result.

.partition (sep)

Split the string at the first occurrence of sep, and return a 3-tuple containing the part before the separator, the
separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing the
string itself, followed by two empty strings.

replace (old, new[, count])
Return a copy of the string with all occurrences of substring old replaced by new. If the optional argument
count is given, only the first count occurrences are replaced.

.rfind (sub[, start[, end]])

Return the highest index in the string where substring sub is found, such that sub is contained within
s [start :end]. Optional arguments start and end are interpreted as in slice notation. Return -1 on failure.

.rindex (sub[, start[, end]])

Like rfind () butraises ValueError when the substring sub is not found.

.rjust (width[,ﬁllchar])

Return the string right justified in a string of length width. Padding is done using the specified fillchar (default
is an ASCII space). The original string is returned if width is less than or equal to 1en (s).

rpartition (sep)

Split the string at the last occurrence of sep, and return a 3-tuple containing the part before the separator, the
separator itself, and the part after the separator. If the separator is not found, return a 3-tuple containing two
empty strings, followed by the string itself.

rsplit (sep=None, maxsplit=-1)

Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done, the rightmost ones. If sep is not specified or None, any whitespace string is a separator. Except
for splitting from the right, rsplit () behaves like split () which is described in detail below.

4.7.

Text Sequence Type — str 47

The Python Library Reference, Release 3.8.20

str.

str.

str.

rstrip ([chars])

Return a copy of the string with trailing characters removed. The chars argument is a string specifying the set
of characters to be removed. If omitted or None, the chars argument defaults to removing whitespace. The
chars argument is not a suffix; rather, all combinations of its values are stripped:

>>> ! spacious '.rstrip()

! spacious'

>>> 'mississippi'.rstrip('ipz')
'mississ'

split (sep=None, maxsplit=-1)

Return a list of the words in the string, using sep as the delimiter string. If maxsplit is given, at most maxsplit
splits are done (thus, the list will have at most maxsplit+1 elements). If maxsplit is not specified or -1,
then there is no limit on the number of splits (all possible splits are made).

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty strings (for
example, '1,,2"'.split (', ") returns ['1"', '', '2']). The sep argument may consist of multiple
characters (for example, ' 1<>2<>3"'.split ('<>"') returns ['1', '2', '3']). Splitting an empty
string with a specified separator returns [''].

For example:

>>> '1,2,3".split (', ")

[ll', '2" V3'j|

>>> '1,2,3".split (', "', maxsplit=1)
['1', '2,3']

>>> '1,2,,3,".split (', ")

['1', '2|, 'l, |3|, l‘]

If sep is not specified or is None, a different splitting algorithm is applied: runs of consecutive whitespace are
regarded as a single separator, and the result will contain no empty strings at the start or end if the string has
leading or trailing whitespace. Consequently, splitting an empty string or a string consisting of just whitespace
with a None separator returns [].

For example:

>>> '1 2 3'.split ()

[lll, lZl, 131}

>>> '1 2 3'.split (maxsplit=1)
['1|! ' 3!}

>>> ! 1 2 3 '.split ()
['1', '2" '3':|

splitlines ([keepends])
Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the resulting
list unless keepends is given and true.

This method splits on the following line boundaries. In particular, the boundaries are a superset of universal
newlines.

Representation | Description

\n Line Feed

\r Carriage Return

\r\n Carriage Return + Line Feed
\v or \x0b Line Tabulation

\f or \x0c Form Feed

\xlc File Separator

\x1d Group Separator

\xle Record Separator

\x85 Next Line (C1 Control Code)
\u2028 Line Separator

\u2029 Paragraph Separator

48

Chapter 4. Built-in Types

The Python Library Reference, Release 3.8.20

Changed in version 3.2: \v and \ £ added to list of line boundaries.

For example:

>>> 'ab c\n\nde fg\rkl\r\n'.splitlines()

['ab c', '', 'de fg', 'kl']

>>> 'ab c\n\nde fg\rkl\r\n'.splitlines (keepends=True)
['ab c\n', '\n', 'de fg\r', 'kl\r\n']

Unlike split () when a delimiter string sep is given, this method returns an empty list for the empty string,
and a terminal line break does not result in an extra line:

>>> "" gsplitlines()

[l

>>> "One line\n".splitlines/()
['One line']

For comparison, split ('\n') gives:

>>> "' . split ('\n")

("'l

>>> 'Two lines\n'.split('\n")
['"Two lines', '']

str.startswith (preﬁx[, start[, end]])
Return True if string starts with the prefix, otherwise return False. prefix can also be a tuple of prefixes to
look for. With optional start, test string beginning at that position. With optional end, stop comparing string
at that position.

str.strip([chars])
Return a copy of the string with the leading and trailing characters removed. The chars argument is a string
specifying the set of characters to be removed. If omitted or None, the chars argument defaults to removing
whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped:

>>> ! spacious '.strip()
'spacious’

>>> 'www.example.com'.strip('cmowz.")
'example'

The outermost leading and trailing chars argument values are stripped from the string. Characters are removed
from the leading end until reaching a string character that is not contained in the set of characters in chars. A
similar action takes place on the trailing end. For example:

>>> comment_string = "#....... Section 3.2.1 Issue #32 !
>>> comment_string.strip('.#! ")
'Section 3.2.1 Issue #32'

str.swapcase ()
Return a copy of the string with uppercase characters converted to lowercase and vice versa. Note that it is
not necessarily true that s . swapcase () . swapcase () == s.

str.title()
Return a titlecased version of the string where words start with an uppercase character and the remaining
characters are lowercase.

For example:

>>> 'Hello world'.title ()
'Hello World'

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The
definition works in many contexts but it means that apostrophes in contractions and possessives form word
boundaries, which may not be the desired result:

4.7. Text Sequence Type — str 49

The Python Library Reference, Release 3.8.20

>>> "they're bill's friends from the UK".title()
"They'Re Bill'S Friends From The Uk"

A workaround for apostrophes can be constructed using regular expressions:

>>> import re
>>> def titlecase(s):
return re.sub(r"[A-Za-z]+ (' [A-Za—-z]+)?2",
lambda mo: mo.group(0) .capitalize(),
s)

>>> titlecase("they're bill's friends.")
"They're Bill's Friends."

str.translate (table)
Return a copy of the string in which each character has been mapped through the given translation table. The
table must be an object that implements indexing via __getitem__ (), typically a mapping or sequence.
When indexed by a Unicode ordinal (an integer), the table object can do any of the following: return a Unicode
ordinal or a string, to map the character to one or more other characters; return None, to delete the character
from the return string; or raise a LookupError exception, to map the character to itself.

You can use str.maketrans () to create a translation map from character-to-character mappings in dif-
ferent formats.

See also the codecs module for a more flexible approach to custom character mappings.

str.upper ()
Return a copy of the string with all the cased characters* converted to uppercase. Note that s . upper () .
isupper () might be False if s contains uncased characters or if the Unicode category of the resulting
character(s) is not “Lu” (Letter, uppercase), but e.g. “Lt” (Letter, titlecase).

The uppercasing algorithm used is described in section 3.13 of the Unicode Standard.

str.z£ill (width)
Return a copy of the string left filled with ASCII ' 0" digits to make a string of length width. A leading sign
prefix (' +'/'-") is handled by inserting the padding affer the sign character rather than before. The original
string is returned if width is less than or equal to 1en (s).

For example:

>>> "42" z£fi1l1(5)
'00042"
>>> "-42" z£fi11(5)
'-0042"

4.7.2 print£-style String Formatting

Note: The formatting operations described here exhibit a variety of quirks that lead to a number of common errors
(such as failing to display tuples and dictionaries correctly). Using the newer formatted string literals, the st r.
format () interface, or femplate strings may help avoid these errors. Each of these alternatives provides their own
trade-offs and benefits of simplicity, flexibility, and/or extensibility.

String objects have one unique built-in operation: the % operator (modulo). This is also known as the string formatting
or interpolation operator. Given format % values (where format is a string), % conversion specifications in
format are replaced with zero or more elements of values. The effect is similar to using the sprintf () in the C

language.

If format requires a single argument, values may be a single non-tuple object.’ Otherwise, values must be a tuple with

5 To format only a tuple you should therefore provide a singleton tuple whose only element is the tuple to be formatted.

50 Chapter 4. Built-in Types

The Python Library Reference, Release 3.8.20

exactly the number of items specified by the format string, or a single mapping object (for example, a dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in this

order:

1.

2
3.
4

6.
7.

When
parent

The '% ' character, which marks the start of the specifier.

. Mapping key (optional), consisting of a parenthesised sequence of characters (for example, (somename)).

Conversion flags (optional), which affect the result of some conversion types.

. Minimum field width (optional). If specified as an ' *' (asterisk), the actual width is read from the next

element of the tuple in values, and the object to convert comes after the minimum field width and optional
precision.

Precision (optional), given as a ' . ' (dot) followed by the precision. If specified as ' *' (an asterisk), the
actual precision is read from the next element of the tuple in values, and the value to convert comes after the
precision.

Length modifier (optional).
Conversion type.

the right argument is a dictionary (or other mapping type), then the formats in the string must include a
hesised mapping key into that dictionary inserted immediately after the '%' character. The mapping key

selects the value to be formatted from the mapping. For example:

>>> print (' has quote types.' %

{'language': "Python", "number": 2})

Python has 002 quote types.

In this

case no * specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag | Meaning

"#' | The value conversion will use the “alternate form” (where defined below).

'0"' | The conversion will be zero padded for numeric values.

'—' | The converted value is left adjusted (overrides the ' 0 ' conversion if both are given).

' ' | (aspace) A blank should be left before a positive number (or empty string) produced by a signed conver-
sion.

'+' | Asign character ('+' or '-"') will precede the conversion (overrides a “space” flag).

A length modifier (h, 1, or L) may be present, but is ignored as it is not necessary for Python — so e.g. $1d is identical

to %d.

The conversion types are:

4.7. Text Sequence Type — str 51

The Python Library Reference, Release 3.8.20

Con- Meaning Notes

version

'd’ Signed integer decimal.

i Signed integer decimal.

'o! Signed octal value. €))]

'u! Obsolete type - it is identical to 'd'. 6)

'x! Signed hexadecimal (lowercase). 2)

'X! Signed hexadecimal (uppercase). 2)

'e! Floating point exponential format (lowercase). 3)

'E! Floating point exponential format (uppercase). 3)

£ Floating point decimal format. 3)

B Floating point decimal format. 3)

'g! Floating point format. Uses lowercase exponential format if exponent is less than -4 or not less | (4)
than precision, decimal format otherwise.

'G' Floating point format. Uses uppercase exponential format if exponent is less than -4 or not | (4)
less than precision, decimal format otherwise.

'c! Single character (accepts integer or single character string).

'r' String (converts any Python object using repzr ()). 5)

's! String (converts any Python object using st r ()).)

'a' String (converts any Python object using ascii ()). &)

'y No argument is converted, results ina ' %' character in the result.

Notes:

(1) The alternate form causes a leading octal specifier (' 0o ") to be inserted before the first digit.

(2) The alternate form causes a leading ' Ox ' or ' 0X"' (depending on whether the 'x ' or ' X' format was used)
to be inserted before the first digit.

(3) The alternate form causes the result to always contain a decimal point, even if no digits follow it.

The precision determines the number of digits after the decimal point and defaults to 6.

(4) The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed as
they would otherwise be.

The precision determines the number of significant digits before and after the decimal point and defaults to 6.

(5) If precision is N, the output is truncated to N characters.

(6) See PEP 237.

Since Python strings have an explicit length, $s conversions do not assume that '\ 0" is the end of the string.

Changed in version 3.1: % £ conversions for numbers whose absolute value is over 1e50 are no longer replaced by $g

conversions.

4.8 Binary Sequence Types — bytes, bytearray, memoryview

The core built-in types for manipulating binary data are bytes and bytearray. They are supported by
memoryview which uses the buffer protocol to access the memory of other binary objects without needing to

make a copy.

The array module supports efficient storage of basic data types like 32-bit integers and IEEE754 double-precision
floating values.

52

Chapter 4. Built-in Types

https://www.python.org/dev/peps/pep-0237

The Python Library Reference, Release 3.8.20

4.8.1 Bytes Objects

Bytes objects are immutable sequences of single bytes. Since many major binary protocols are based on the ASCII
text encoding, bytes objects offer several methods that are only valid when working with ASCII compatible data and
are closely related to string objects in a variety of other ways.

class bytes ([source[, encoding[, errors]]])
Firstly, the syntax for bytes literals is largely the same as that for string literals, except that a b prefix is added:

» Single quotes: b'still allows embedded "double" quotes'
o Double quotes: b"still allows embedded 'single' quotes".
e Triple quoted: b' ' '3 single quotes''',b"""3 double quotes"""

Only ASCII characters are permitted in bytes literals (regardless of the declared source code encoding). Any
binary values over 127 must be entered into bytes literals using the appropriate escape sequence.

As with string literals, bytes literals may also use a r prefix to disable processing of escape sequences. See
strings for more about the various forms of bytes literal, including supported escape sequences.

While bytes literals and representations are based on ASCII text, bytes objects actually behave like immutable
sequences of integers, with each value in the sequence restricted such that 0 <= x < 256 (attempts to vio-
late this restriction will trigger ValueError). This is done deliberately to emphasise that while many binary
formats include ASCII based elements and can be usefully manipulated with some text-oriented algorithms,
this is not generally the case for arbitrary binary data (blindly applying text processing algorithms to binary
data formats that are not ASCII compatible will usually lead to data corruption).

In addition to the literal forms, bytes objects can be created in a number of other ways:
« A zero-filled bytes object of a specified length: bytes (10)
« From an iterable of integers: bytes (range (20))
» Copying existing binary data via the buffer protocol: bytes (ob3j)

Also see the bytes built-in.

Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal numbers are a commonly used
format for describing binary data. Accordingly, the bytes type has an additional class method to read data in
that format:

classmethod fromhex (string)
This bytes class method returns a bytes object, decoding the given string object. The string must
contain two hexadecimal digits per byte, with ASCII whitespace being ignored.

>>> bytes.fromhex ('2Ef0 F1£f2 ")
b' A\xfO\xf1\xf2"

Changed in version 3.7: bytes. fromhex () now skips all ASCII whitespace in the string, not just
spaces.

A reverse conversion function exists to transform a bytes object into its hexadecimal representation.

hex ([sep[, bytes _per_sep]])
Return a string object containing two hexadecimal digits for each byte in the instance.

>>> b'\xf0\xf1\xf2' . .hex ()
'fOf1£2"

If you want to make the hex string easier to read, you can specify a single character separator sep param-
eter to include in the output. By default between each byte. A second optional bytes_per_sep parameter
controls the spacing. Positive values calculate the separator position from the right, negative values from
the left.

4.8. Binary Sequence Types — bytes, bytearray, memoryview 53

The Python Library Reference, Release 3.8.20

>>> value = b'\xf0\x£f1\x£f2'
>>> value.hex ('-")

'fO0-f1-£f2"

>>> value.hex('_', 2)
'fO_f1f2"

>>> D'UUDDLRLRAB'.hex (' ', -4)

'55554444 4c524c52 4142"

New in version 3.5.

Changed in version 3.8: bytes.hex () now supports optional sep and bytes_per_sep parameters to
insert separators between bytes in the hex output.

Since bytes objects are sequences of integers (akin to a tuple), for a bytes object b, b [0] will be an integer, while
b[0:1] will be a bytes object of length 1. (This contrasts with text strings, where both indexing and slicing will
produce a string of length 1)

The representation of bytes objects uses the literal format (b'...") since it is often more useful than e.g.
bytes ([46, 46, 46]). You can always convert a bytes object into a list of integers using 1ist (b).

Note: For Python 2.x users: In the Python 2.x series, a variety of implicit conversions between 8-bit strings (the
closest thing 2.x offers to a built-in binary data type) and Unicode strings were permitted. This was a backwards
compatibility workaround to account for the fact that Python originally only supported 8-bit text, and Unicode text
was a later addition. In Python 3.x, those implicit conversions are gone - conversions between 8-bit binary data and
Unicode text must be explicit, and bytes and string objects will always compare unequal.

4.8.2 Bytearray Objects

bytearray objects are a mutable counterpart to byt es objects.

class bytearray ([source[, encoding[, errors]]])
There is no dedicated literal syntax for bytearray objects, instead they are always created by calling the con-
structor:

o Creating an empty instance: bytearray ()

o Creating a zero-filled instance with a given length: bytearray (10)

o From an iterable of integers: bytearray (range (20))

« Copying existing binary data via the buffer protocol: bytearray (b'Hi!")

As bytearray objects are mutable, they support the mutable sequence operations in addition to the common
bytes and bytearray operations described in Bytes and Bytearray Operations.

Also see the bytearray built-in.

Since 2 hexadecimal digits correspond precisely to a single byte, hexadecimal numbers are a commonly used
format for describing binary data. Accordingly, the bytearray type has an additional class method to read data
in that format:

classmethod fromhex (string)
This bytearray class method returns bytearray object, decoding the given string object. The string
must contain two hexadecimal digits per byte, with ASCII whitespace being ignored.

>>> bytearray.fromhex ('2Ef0 F1£f2 ")
bytearray (b' . \xf0\xf1\x£f2")

Changed in version 3.7: bytearray. fromhex () now skips all ASCII whitespace in the string, not
just spaces.

A reverse conversion function exists to transform a bytearray object into its hexadecimal representation.

54 Chapter 4. Built-in Types

The Python Library Reference, Release 3.8.20

hex ([sep[, bytes _per_sep]])
Return a string object containing two hexadecimal digits for each byte in the instance.

>>> bytearray (b'\x£f0\x£f1\x£f2') .hex ()
'fOf1£2"

New in version 3.5.

Changed in version 3.8: Similar to bytes. hex (), bytearray.hex () now supports optional sep
and bytes_per_sep parameters to insert separators between bytes in the hex output.

Since bytearray objects are sequences of integers (akin to a list), for a bytearray object b, b [0] will be an integer,
while b[0:1] will be a bytearray object of length 1. (This contrasts with text strings, where both indexing and
slicing will produce a string of length 1)

The representation of bytearray objects uses the bytes literal format (bytearray (b'. .. ")) since it is often more
useful than e.g. bytearray ([46, 46, 46]). You can always convert a bytearray object into a list of integers
using 1ist (b).

4.8.3 Bytes and Bytearray Operations

Both bytes and bytearray objects support the common sequence operations. They interoperate not just with operands
of the same type, but with any bytes-like object. Due to this flexibility, they can be freely mixed in operations without
causing errors. However, the return type of the result may depend on the order of operands.

Note: The methods on bytes and bytearray objects don’t accept strings as their arguments, just as the methods on
strings don’t accept bytes as their arguments. For example, you have to write:

a = "abc"

b = a.replace("a", "f")
and:

a = b"abc"

b = a.replace(b"a", b"f")

Some bytes and bytearray operations assume the use of ASCII compatible binary formats, and hence should be
avoided when working with arbitrary binary data. These restrictions are covered below.

Note: Using these ASCII based operations to manipulate binary data that is not stored in an ASCII based format
may lead to data corruption.

The following methods on bytes and bytearray objects can be used with arbitrary binary data.

bytes.count (sub[, start[, end]])

bytearray.count (sub[, start[, end]])
Return the number of non-overlapping occurrences of subsequence sub in the range [start, end]. Optional
arguments start and end are interpreted as in slice notation.

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.
Changed in version 3.3: Also accept an integer in the range 0 to 255 as the subsequence.

bytes.decode (encoding="utf-8”, errors="strict”)

bytearray.decode (encoding="utf-8”, errors="strict”)
Return a string decoded from the given bytes. Default encoding is 'ut £-8"'. errors may be given to set a
different error handling scheme. The default for errors is ' strict ', meaning that encoding errors raise a

UnicodeError. Other possible values are ' ignore', 'replace' and any other name registered via

4.8. Binary Sequence Types — bytes, bytearray, memoryview 55

The Python Library Reference, Release 3.8.20

codecs.register_error (), see section Error Handlers. For a list of possible encodings, see section
Standard Encodings.

Note: Passing the encoding argument to st r allows decoding any bytes-like object directly, without needing
to make a temporary bytes or bytearray object.

Changed in version 3.1: Added support for keyword arguments.

bytes.endswith (su]ﬁx[, start[, end]])

bytearray.endswith (suﬁx[, start[, end]])
Return True if the binary data ends with the specified suffix, otherwise return False. suffix can also be
a tuple of suffixes to look for. With optional start, test beginning at that position. With optional end, stop
comparing at that position.

The suffix(es) to search for may be any byfes-like object.

bytes.find (sub[, start[, end]])

bytearray.find (sub[, start[, end]])
Return the lowest index in the data where the subsequence sub is found, such that sub is contained in the slice
s[start:end]. Optional arguments start and end are interpreted as in slice notation. Return -1 if sub is
not found.

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.

Note: The find () method should be used only if you need to know the position of sub. To check if sub is
a substring or not, use the in operator:

>>> pb'Py' in b'Python'
True

Changed in version 3.3: Also accept an integer in the range 0 to 255 as the subsequence.

bytes.index (sub[, start[, end]])
bytearray.index (sub[, start[, end]])
Like find (), but raise ValueError when the subsequence is not found.

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.
Changed in version 3.3: Also accept an integer in the range 0 to 255 as the subsequence.

bytes. join (iterable)

bytearray.join (iterable)
Return a bytes or bytearray object which is the concatenation of the binary data sequences in iterable. A
TypeError will be raised if there are any values in iferable that are not bytes-like objects, including st r
objects. The separator between elements is the contents of the bytes or bytearray object providing this method.

static bytes.maketrans (from, to)

static bytearray.maketrans (from, to)
This static method returns a translation table usable for bytes. translate () that will map each character
in from into the character at the same position in fo; from and to must both be bytes-like objects and have the
same length.

New in version 3.1.

bytes.partition (sep)

bytearray.partition (sep)
Split the sequence at the first occurrence of sep, and return a 3-tuple containing the part before the separator,
the separator itself or its bytearray copy, and the part after the separator. If the separator is not found, return
a 3-tuple containing a copy of the original sequence, followed by two empty bytes or bytearray objects.

The separator to search for may be any bytes-like object.

56 Chapter 4. Built-in Types

The Python Library Reference, Release 3.8.20

bytes.replace (0ld, new[, count])

bytearray.replace (old, new[, count])
Return a copy of the sequence with all occurrences of subsequence old replaced by new. If the optional
argument count is given, only the first count occurrences are replaced.

The subsequence to search for and its replacement may be any bytes-like object.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

bytes.rfind (sub[, start[, end]])

bytearray.rfind (sub[, start[, end]])
Return the highest index in the sequence where the subsequence sub is found, such that sub is contained within
s [start :end]. Optional arguments start and end are interpreted as in slice notation. Return -1 on failure.

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.
Changed in version 3.3: Also accept an integer in the range 0 to 255 as the subsequence.

bytes.rindex (sub[, start[, end])
bytearray.rindex (sub[, start|, end]])
Like rfind () butraises ValueError when the subsequence sub is not found.

The subsequence to search for may be any bytes-like object or an integer in the range 0 to 255.
Changed in version 3.3: Also accept an integer in the range 0 to 255 as the subsequence.

bytes.rpartition (sep)

bytearray.rpartition (sep)
Split the sequence at the last occurrence of sep, and return a 3-tuple containing the part before the separator,
the separator itself or its bytearray copy, and the part after the separator. If the separator is not found, return
a 3-tuple containing two empty bytes or bytearray objects, followed by a copy of the original sequence.

The separator to search for may be any bytes-like object.

bytes.startswith (preﬁx[, start[, end]])

bytearray.startswith (preﬁx[, start[, end]])
Return True if the binary data starts with the specified prefix, otherwise return False. prefix can also be
a tuple of prefixes to look for. With optional start, test beginning at that position. With optional end, stop
comparing at that position.

The prefix(es) to search for may be any bytes-like object.

bytes.translate (table, /, delete=b")

bytearray.translate (table, /, delete=b")
Return a copy of the bytes or bytearray object where all bytes occurring in the optional argument delete are
removed, and the remaining bytes have been mapped through the given translation table, which must be a bytes
object of length 256.

You can use the bytes.maketrans () method to create a translation table.

Set the fable argument to None for translations that only delete characters:

>>> b'read this short text'.translate (None, b'aeiou')
b'rd ths shrt txt'

Changed in version 3.6: delete is now supported as a keyword argument.

The following methods on bytes and bytearray objects have default behaviours that assume the use of ASCII com-
patible binary formats, but can still be used with arbitrary binary data by passing appropriate arguments. Note that
all of the bytearray methods in this section do not operate in place, and instead produce new objects.

bytes.center (width[,ﬁllbyte])

4.8. Binary Sequence Types — bytes, bytearray, memoryview 57

The Python Library Reference, Release 3.8.20

bytearray.center (width[, ﬁllbyte])
Return a copy of the object centered in a sequence of length widrh. Padding is done using the specified fillbyte
(default is an ASCII space). For byt es objects, the original sequence is returned if width is less than or equal
tolen(s).

Note: The bytearray version of this method does nor operate in place - it always produces a new object, even
if no changes were made.

bytes.1ljust (width|, fillbyte)

bytearray.ljust (width[, ﬁllbyte])
Return a copy of the object left justified in a sequence of length width. Padding is done using the specified
fillbyte (default is an ASCII space). For byt es objects, the original sequence is returned if width is less than
orequal to len (s).

Note: The bytearray version of this method does nor operate in place - it always produces a new object, even
if no changes were made.

bytes.lstrip([chars])

bytearray.lstrip ([chars])
Return a copy of the sequence with specified leading bytes removed. The chars argument is a binary sequence
specifying the set of byte values to be removed - the name refers to the fact this method is usually used with
ASCII characters. If omitted or None, the chars argument defaults to removing ASCII whitespace. The chars
argument is not a prefix; rather, all combinations of its values are stripped:

>>> b spacious " lstrip()
b'spacious !
>>> b'www.example.com'.lstrip(b'cmowz.")

b'example.com'

The binary sequence of byte values to remove may be any byfes-like object.

Note: The bytearray version of this method does nor operate in place - it always produces a new object, even
if no changes were made.

bytes.rjust (widh|, fillbyte |)

bytearray.rjust (width[, ﬁllbyte])
Return a copy of the object right justified in a sequence of length width. Padding is done using the specified
fillbyte (default is an ASCII space). For byt es objects, the original sequence is returned if width is less than
orequal to len (s).

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

bytes.rsplit (sep=None, maxsplit=-1)

bytearray.rsplit (sep=None, maxsplit=-1)
Split the binary sequence into subsequences of the same type, using sep as the delimiter string. If maxsplit is
given, at most maxsplit splits are done, the rightmost ones. If sep is not specified or None, any subsequence
consisting solely of ASCII whitespace is a separator. Except for splitting from the right, rspl1it () behaves
like sp1it () which is described in detail below.

bytes.rstrip ([chars])

bytearray.rstrip([chars])
Return a copy of the sequence with specified trailing bytes removed. The chars argument is a binary sequence
specifying the set of byte values to be removed - the name refers to the fact this method is usually used with

58 Chapter 4. Built-in Types

The Python Library Reference, Release 3.8.20

ASCII characters. If omitted or None, the chars argument defaults to removing ASCII whitespace. The chars
argument is not a suffix; rather, all combinations of its values are stripped:

>>> b spacious '.rstrip()

b!' spacious'

>>> b'mississippi'.rstrip(b'ipz')
b'mississ'

The binary sequence of byte values to remove may be any byfes-like object.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

bytes.split (sep=None, maxsplit=-1)

bytearray.split (sep=None, maxsplit=-1)
Split the binary sequence into subsequences of the same type, using sep as the delimiter string. If maxsplit
is given and non-negative, at most maxsplit splits are done (thus, the list will have at most maxsplit+1
elements). If maxsplit is not specified or is —1, then there is no limit on the number of splits (all possible splits
are made).

If sep is given, consecutive delimiters are not grouped together and are deemed to delimit empty subsequences
(for example, b'1,,2"'.split (b', ') returns [b'1', b'', b'2']). The sep argument may con-
sist of a multibyte sequence (for example, b'1<>2<>3"'.split (b'<>") returns [b'1', b'2",
b'3']). Splitting an empty sequence with a specified separator returns [b'"'] or [bytearray (b'"')]
depending on the type of object being split. The sep argument may be any bytes-like object.

For example:

>>> b'1,2,3".split(b',")

[b'1l', b'2', b'3"']

>>> b'1,2,3".split(b', "', maxsplit=1)
[b'1l', b'2,3']

>>> pb'1,2,,3,".split(b', ")

[b’lV, bl2|’ b’l’ bY3V, b"]

If sep is not specified or is None, a different splitting algorithm is applied: runs of consecutive ASCII whites-
pace are regarded as a single separator, and the result will contain no empty strings at the start or end if the
sequence has leading or trailing whitespace. Consequently, splitting an empty sequence or a sequence consist-
ing solely of ASCII whitespace without a specified separator returns [].

For example:

>>> b'l 2 3'.split ()

[b'1', b'2', b'3"']

>>> p'l 2 3'.split (maxsplit=1)
[b'1', b'2 3']

>>> b 1 2 3 '.split ()
[b'1', b'2', b'3']

bytes.strip ([chars])

bytearray.strip([chars])
Return a copy of the sequence with specified leading and trailing bytes removed. The chars argument is a
binary sequence specifying the set of byte values to be removed - the name refers to the fact this method is
usually used with ASCII characters. If omitted or None, the chars argument defaults to removing ASCII
whitespace. The chars argument is not a prefix or suffix; rather, all combinations of its values are stripped:

>>> b' spacious '.strip()
b'spacious'

>>> pb'www.example.com'.strip(b'cmowz.")
b'example'

4.8. Binary Sequence Types — bytes, bytearray, memoryview 59

The Python Library Reference, Release 3.8.20

The binary sequence of byte values to remove may be any bytes-like object.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

The following methods on bytes and bytearray objects assume the use of ASCII compatible binary formats and should
not be applied to arbitrary binary data. Note that all of the bytearray methods in this section do not operate in place,
and instead produce new objects.

bytes.capitalize ()

bytearray.capitalize ()
Return a copy of the sequence with each byte interpreted as an ASCII character, and the first byte capitalized
and the rest lowercased. Non-ASCII byte values are passed through unchanged.

Note: The bytearray version of this method does nor operate in place - it always produces a new object, even
if no changes were made.

bytes.expandtabs (tabsize=8)

bytearray.expandtabs (fabsize=8)
Return a copy of the sequence where all ASCII tab characters are replaced by one or more ASCII spaces,
depending on the current column and the given tab size. Tab positions occur every fabsize bytes (default is
8, giving tab positions at columns 0, 8, 16 and so on). To expand the sequence, the current column is set to
zero and the sequence is examined byte by byte. If the byte is an ASCII tab character (b '\t '), one or more
space characters are inserted in the result until the current column is equal to the next tab position. (The tab
character itself is not copied.) If the current byte is an ASCII newline (b ' \n ") or carriage return (b '\r "),
it is copied and the current column is reset to zero. Any other byte value is copied unchanged and the current
column is incremented by one regardless of how the byte value is represented when printed:

>>> b'01\t012\t0123\t01234"' .expandtabs ()

b'01l 012 0123 01234"
>>> p'01\t012\t0123\t01234"' .expandtabs (4)
b'0l 012 0123 01234"

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

bytes.isalnum ()

bytearray.isalnum ()
Return True if all bytes in the sequence are alphabetical ASCII characters or ASCII decimal digits and
the sequence is not empty, False otherwise. Alphabetic ASCII characters are those byte values in the se-
quence b'abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'. ASCII decimal
digits are those byte values in the sequence b'0123456789"'.

For example:

>>> b'ABCabcl'.isalnum()
True
>>> Pb'ABC abcl'.isalnum/()
False

bytes.isalpha ()

bytearray.isalpha ()
Return True if all bytes in the sequence are alphabetic ASCII characters and the sequence is
not empty, False otherwise. Alphabetic ASCII characters are those byte values in the sequence
b'abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ"'.

For example:

60 Chapter 4. Built-in Types

The Python Library Reference, Release 3.8.20

>>> pb'ABCabc'.isalpha()
True

>>> p'ABCabcl'.isalpha ()
False

bytes.isascii ()

bytearray.isascii ()
Return True if the sequence is empty or all bytes in the sequence are ASCII, False otherwise. ASCII bytes
are in the range 0-Ox7F.

New in version 3.7.

bytes.isdigit ()

bytearray.isdigit ()
Return True if all bytes in the sequence are ASCII decimal digits and the sequence is not empty, False
otherwise. ASCII decimal digits are those byte values in the sequence b'0123456789"'.

For example:

>>> p'1234" .isdigit ()
True

>>> pb'1.23"'.isdigit ()
False

bytes.islower ()

bytearray.islower ()
Return True if there is at least one lowercase ASCII character in the sequence and no uppercase ASCII
characters, False otherwise.

For example:

>>> b'hello world'.islower ()

True

>>> b'Hello world'.islower ()

False

Lowercase ASCI characters are those byte values in the sequence

b'abcdefghijklmnopgrstuvwxyz'. Uppercase ASCII characters are those byte values in the
sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ '.

bytes.isspace ()

bytearray.isspace ()
Return True if all bytes in the sequence are ASCII whitespace and the sequence is not empty, False other-
wise. ASCII whitespace characters are those byte values in the sequence b' \t\n\r\x0b\f"' (space, tab,
newline, carriage return, vertical tab, form feed).

bytes.istitle()

bytearray.istitle()
Return True if the sequence is ASCII titlecase and the sequence is not empty, False otherwise. See bytes.
title () for more details on the definition of “titlecase”.

For example:

>>> b'Hello World'.istitle ()
True
>>> p'Hello world'.istitle()
False

bytes.isupper ()

bytearray.isupper ()
Return True if there is at least one uppercase alphabetic ASCII character in the sequence and no lowercase
ASCII characters, False otherwise.

For example:

4.8. Binary Sequence Types — bytes, bytearray, memoryview 61

The Python Library Reference, Release 3.8.20

>>> Db'HELLO WORLD'.isupper ()

True

>>> p'Hello world'.isupper ()

False

Lowercase ASCII characters are those byte values in the sequence

b'abcdefghijklmnopgrstuvwxyz'. Uppercase ASCII characters are those byte values in the
sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ '.

bytes.lower ()
bytearray.lower ()

Return a copy of the sequence with all the uppercase ASCII characters converted to their corresponding low-
ercase counterpart.

For example:

>>> b'Hello World'.lower ()
b'hello world'

Lowercase ASCII characters are those byte values in the sequence
b'abcdefghijklmnopgrstuvwxyz'. Uppercase ASCII characters are those byte values in the
sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ '.

Note: The bytearray version of this method does nor operate in place - it always produces a new object, even
if no changes were made.

bytes.splitlines (keepends=False)
bytearray.splitlines (keepends=False)

Return a list of the lines in the binary sequence, breaking at ASCII line boundaries. This method uses the
universal newlines approach to splitting lines. Line breaks are not included in the resulting list unless keepends
is given and true.

For example:

>>> b'ab c\n\nde fg\rkl\r\n'.splitlines/()

[b'ab ¢', b''", b'de fg', b'kl"']

>>> b'ab c\n\nde fg\rkl\r\n'.splitlines (keepends=True)
[b'ab c\n', b'\n', b'de fg\r', b'kl\r\n']

Unlike split () when a delimiter string sep is given, this method returns an empty list for the empty string,
and a terminal line break does not result in an extra line:

>>> b"" . split(b'\n'), b"Two lines\n".split(b'\n")
([b''"], [b'Two lines', b''])

>>> b"" . splitlines (), b"One line\n".splitlines ()
([1, [b'One line'])

bytes.swapcase ()
bytearray.swapcase ()

Return a copy of the sequence with all the lowercase ASCII characters converted to their corresponding up-
percase counterpart and vice-versa.

For example:

>>> pb'Hello World'.swapcase()
b'hELLO wORLD'

Lowercase ASCII characters are those byte values in the sequence
b'abcdefghijklmnopgrstuvwxyz'. Uppercase ASCII characters are those byte values in the
sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ '.

62

Chapter 4. Built-in Types

The Python Library Reference, Release 3.8.20

Unlike str.swapcase (), it is always the case that bin.swapcase () . swapcase () == bin for
the binary versions. Case conversions are symmetrical in ASCII, even though that is not generally true for
arbitrary Unicode code points.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

bytes.title()

bytearray.title()
Return a titlecased version of the binary sequence where words start with an uppercase ASCII character and
the remaining characters are lowercase. Uncased byte values are left unmodified.

For example:

>>> b'Hello world'.title()
b'Hello World'

Lowercase ASCII characters are those byte values in the sequence
b'abcdefghijklmnopgrstuvwxyz'. Uppercase ASCII characters are those byte values in the
sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ '. All other byte values are uncased.

The algorithm uses a simple language-independent definition of a word as groups of consecutive letters. The
definition works in many contexts but it means that apostrophes in contractions and possessives form word
boundaries, which may not be the desired result:

>>> pb"they're bill's friends from the UK".title()
b"They'Re Bill'S Friends From The Uk"

A workaround for apostrophes can be constructed using regular expressions:

>>> import re
>>> def titlecase(s):
return re.sub (rb" [A-Za-z]+ (' [A-Za-z]+)2",
lambda mo: mo.group(0) [0:1] .upper () +
mo.group (0) [1:].lower (),
s)

>>> titlecase (b"they're bill's friends.")
b"They're Bill's Friends."

Note: The bytearray version of this method does nor operate in place - it always produces a new object, even
if no changes were made.

bytes.upper ()

bytearray.upper ()
Return a copy of the sequence with all the lowercase ASCII characters converted to their corresponding up-
percase counterpart.

For example:

>>> b'Hello World'.upper ()
b'HELLO WORLD'

Lowercase ASCI characters are those byte values in the sequence
b'abcdefghijklmnopgrstuvwxyz'. Uppercase ASCII characters are those byte values in the
sequence b ' ABCDEFGHIJKLMNOPQRSTUVWXYZ '.

Note: The bytearray version of this method does not operate in place - it always produces a new object, even

4.8. Binary Sequence Types — bytes, bytearray, memoryview 63

The Python Library Reference, Release 3.8.20

if no changes were made.

bytes.z£ill (width)

bytearray.z£ill (width)
Return a copy of the sequence left filled with ASCII b ' 0 ' digits to make a sequence of length widrh. A leading
sign prefix (b'+'/Db'-") is handled by inserting the padding after the sign character rather than before. For
bytes objects, the original sequence is returned if width is less than or equal to 1en (seq) .

For example:

>>> b"42" . z£i11(5)
b'00042"

>>> p"-42" . z£fi11(5)
b'-0042"

Note: The bytearray version of this method does not operate in place - it always produces a new object, even
if no changes were made.

4.8.4 print£-style Bytes Formatting

Note: The formatting operations described here exhibit a variety of quirks that lead to a number of common errors
(such as failing to display tuples and dictionaries correctly). If the value being printed may be a tuple or dictionary,
wrap it in a tuple.

Bytes objects (bytes/bytearray) have one unique built-in operation: the % operator (modulo). This is also
known as the bytes formatting or interpolation operator. Given format % values (where format is a bytes
object), % conversion specifications in format are replaced with zero or more elements of values. The effect is similar
to using the sprintf () in the C language.

If format requires a single argument, values may be a single non-tuple object.’ Otherwise, values must be a tuple
with exactly the number of items specified by the format bytes object, or a single mapping object (for example, a
dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in this
order:

1. The '%"' character, which marks the start of the specifier.

2. Mapping key (optional), consisting of a parenthesised sequence of characters (for example, (somename)).
3. Conversion flags (optional), which affect the result of some conversion types.
4

. Minimum field width (optional). If specified as an ' *' (asterisk), the actual width is read from the next
element of the tuple in values, and the object to convert comes after the minimum field width and optional

precision.

5. Precision (optional), given as a ' . ' (dot) followed by the precision. If specified as ' *' (an asterisk), the
actual precision is read from the next element of the tuple in values, and the value to convert comes after the
precision.

6. Length modifier (optional).
7. Conversion type.

When the right argument is a dictionary (or other mapping type), then the formats in the bytes object must include
a parenthesised mapping key into that dictionary inserted immediately after the ' %' character. The mapping key
selects the value to be formatted from the mapping. For example:

64 Chapter 4. Built-in Types

The Python Library Reference, Release 3.8.20

>>> print (b' has quote types.' %
. {b'language': b"Python", b"number": 2})
b'Python has 002 quote types.'

In this case no * specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag | Meaning
'#' | The value conversion will use the “alternate form” (where defined below).
'0" | The conversion will be zero padded for numeric values.

'—' | The converted value is left adjusted (overrides the ' 0 ' conversion if both are given).

' ' | (aspace) A blank should be left before a positive number (or empty string) produced by a signed conver-
sion.

'+' | Asigncharacter ('+"' or '-") will precede the conversion (overrides a “space” flag).

A length modifier (h, 1, or L) may be present, but is ignored as it is not necessary for Python - so e.g. $1d is identical
to 5d.

The conversion types are:

Con- Meaning Notes

version

'd’ Signed integer decimal.

i Signed integer decimal.

'o! Signed octal value. €))]

'u! Obsolete type - it is identical to 'd'. ®)

'x! Signed hexadecimal (lowercase). 2)

'X! Signed hexadecimal (uppercase). 2)

'e! Floating point exponential format (lowercase). 3)

'E! Floating point exponential format (uppercase). 3)

'£! Floating point decimal format. 3)

B Floating point decimal format. 3)

'g! Floating point format. Uses lowercase exponential format if exponent is less than -4 or not less | (4)
than precision, decimal format otherwise.

'G' Floating point format. Uses uppercase exponential format if exponent is less than -4 or not | (4)
less than precision, decimal format otherwise.

'c! Single byte (accepts integer or single byte objects).

'b' Bytes (any object that follows the buffer protocol or has ___bytes__ ()). (®)]

's! 's' isan alias for 'b"' and should only be used for Python2/3 code bases. ©6)

'a' Bytes (converts any Python object using repr (obj).encode ('ascii', | (5)
'backslashreplace)).

‘¢! 'r' is an alias for 'a"' and should only be used for Python2/3 code bases. @)

vyt No argument is converted, results ina ' %' character in the result.

Notes:

(1) The alternate form causes a leading octal specifier (' 0o ') to be inserted before the first digit.

(2) The alternate form causes a leading ' Ox ' or ' 0X' (depending on whether the 'x ' or ' X' format was used)
to be inserted before the first digit.

(3) The alternate form causes the result to always contain a decimal point, even if no digits follow it.
The precision determines the number of digits after the decimal point and defaults to 6.

(4) The alternate form causes the result to always contain a decimal point, and trailing zeroes are not removed as
they would otherwise be.

The precision determines the number of significant digits before and after the decimal point and defaults to 6.

4.8. Binary Sequence Types — bytes, bytearray, memoryview 65

The Python Library Reference, Release 3.8.20

S
(6)
(7
®)

If precision is N, the output is truncated to N characters.
'$s' is deprecated, but will not be removed during the 3.x series.
b'&r"' is deprecated, but will not be removed during the 3.x series.

See PEP 237.

Note:

The bytearray version of this method does not operate in place - it always produces a new object, even if no

changes were made.

See also:

PEP 461 - Adding % formatting to bytes and bytearray

New in version 3.5.

4.8.5 Memory Views

memoryview objects allow Python code to access the internal data of an object that supports the buffer protocol
without copying.

class memoryview (obj)

Create a memoryview that references obj. obj must support the buffer protocol. Built-in objects that support
the buffer protocol include bytes and bytearray.

A memoryview has the notion of an element, which is the atomic memory unit handled by the originating
object obj. For many simple types such as bytes and bytearray, an element is a single byte, but other
types such as array . array may have bigger elements.

len (view) is equal to the length of tolist. If view.ndim = 0, thelengthis 1. If view.ndim =
1, the length is equal to the number of elements in the view. For higher dimensions, the length is equal to
the length of the nested list representation of the view. The i temsi ze attribute will give you the number of
bytes in a single element.

A memoryview supports slicing and indexing to expose its data. One-dimensional slicing will result in a
subview:

>>> v = memoryview (b'abcefg')
>>> v[1]

98

>>> v[-1]

103

>>> v[1:4]

<memory at 0x7£3ddc9£4350>
>>> bytes(v[1:4])

b'bce’

If format is one of the native format specifiers from the st ruct module, indexing with an integer or a tuple
of integers is also supported and returns a single element with the correct type. One-dimensional memoryviews
can be indexed with an integer or a one-integer tuple. Multi-dimensional memoryviews can be indexed with
tuples of exactly ndim integers where ndim is the number of dimensions. Zero-dimensional memoryviews can
be indexed with the empty tuple.

Here is an example with a non-byte format:

>>> import array

>>> a = array.array('l', [-11111111, 22222222, —-33333333, 444444447)
>>> m = memoryview(a)

>>> m[0]

-11111111

>>> m[-1]

(continues on next page)

66

Chapter 4. Built-in Types

https://www.python.org/dev/peps/pep-0237
https://www.python.org/dev/peps/pep-0461

The Python Library Reference, Release 3.8.20

(continued from previous page)

44444444
>>> m[::2].tolist ()
[-11111111, -33333333]

If the underlying object is writable, the memoryview supports one-dimensional slice assignment. Resizing is
not allowed:

>>> data = bytearray(b'abcefg')
>>> v = memoryview (data)

>>> v.readonly

False

>>> v[0] = ord(b'z")

>>> data

bytearray (b'zbcefg')

>>> v[1:4] = b'123"

>>> data
bytearray (b'z123fg"')
>>> v[2:3] = b'spam'

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: memoryview assignment: lvalue and rvalue have different structures
>>> v[2:6] = b'spamn'
>>> data
bytearray(b'zlspam')

One-dimensional memoryviews of hashable (read-only) types with formats ‘B’, ‘b’ or ‘c’ are also hashable. The

hash is defined as hash (m) == hash (m.tobytes ()):
>>> v = memoryview (b'abcefg')

>>> hash(v) == hash(b'abcefg')

True

>>> hash(v[2:4]) == hash(b'ce')

True

>>> hash(v[::-2]) == hash(b'abcefg'[::-2])
True

Changed in version 3.3: One-dimensional memoryviews can now be sliced. One-dimensional memoryviews
with formats ‘B’, ‘b’ or ‘¢’ are now hashable.

Changed in version 3.4: memoryview is now registered automatically with collections.abc.
Sequence

Changed in version 3.5: memoryviews can now be indexed with tuple of integers.
memoryview has several methods:

__eq __ (exporter)
A memoryview and a PEP 3118 exporter are equal if their shapes are equivalent and if all corresponding
values are equal when the operands’ respective format codes are interpreted using st ruct syntax.

For the subset of st ruct format strings currently supported by tolist (), v and w are equal if v.

tolist () == w.tolist():

>>> import array

>>> a = array.array('I', [1, 2, 3, 4, 5])

>>> b = array.array('d', [1.0, 2.0, 3.0, 4.0, 5.0])

>>> ¢ = array.array('b', [5, 3, 11)

>>> X = memoryview(a)

>>> y = memoryview (b)

>>> x == g == y ==

True

>>> x.tolist () == a.tolist() == y.tolist () == b.tolist ()

(continues on next page)

4.8. Binary Sequence Types — bytes, bytearray, memoryview 67

https://www.python.org/dev/peps/pep-3118

The Python Library Reference, Release 3.8.20

(continued from previous page)

True

>>> z = y[::-2]

>>> z == ¢C

True

>>> z.tolist () == c.tolist ()
True

If either format string is not supported by the st ruct module, then the objects will always compare as
unequal (even if the format strings and buffer contents are identical):

>>> from ctypes import BigEndianStructure, c_long
>>> class BEPoint (BigEndianStructure) :
fields = [("x", c_long), ("y", c_long)]

>>> point = BEPoint (100, 200)

>>> a = memoryview (point)

>>> b = memoryview (point)

>>> a == point

False

>>> g == b

False

Note that, as with floating point numbers, v is w does not imply v == w for memoryview objects.

Changed in version 3.3: Previous versions compared the raw memory disregarding the item format and
the logical array structure.

tobytes (order=None)

Return the data in the buffer as a bytestring. This is equivalent to calling the byt es constructor on the
memoryview.

>>> m = memoryview (b"abc")
>>> m.tobytes ()

b'abc'

>>> bytes (m)

b'abc'

For non-contiguous arrays the result is equal to the flattened list representation with all elements converted
tobytes. tobytes () supports all format strings, including those that are not in st ruct module syntax.

New in version 3.8: order can be {‘C, ‘F’, ‘A’}. When order is ‘C’ or ‘F’, the data of the original array is
converted to C or Fortran order. For contiguous views, ‘A’ returns an exact copy of the physical memory.
In particular, in-memory Fortran order is preserved. For non-contiguous views, the data is converted to
C first. order=None is the same as order="C".

hex ([sep[, bytes _per_sep]])

Return a string object containing two hexadecimal digits for each byte in the buffer.

>>> m = memoryview (b"abc")
>>> m.hex ()
'616263"

New in version 3.5.

Changed in version 3.8: Similar to bytes. hex (), memoryview. hex () now supports optional sep
and bytes_per_sep parameters to insert separators between bytes in the hex output.

tolist ()

Return the data in the buffer as a list of elements.

>>> memoryview (b'abc') .tolist ()
[97, 98, 99]

(continues on next page)

Chapter 4. Built-in Types

The Python Library Reference, Release 3.8.20

(continued from previous page)

>>> import array

>>> a = array.array('d', [1.1, 2.2, 3.31])
>>> m = memoryview(a)

>>> m.tolist ()

(1.1, 2.2, 3.3]

Changed in version 3.3: tolist () now supports all single character native formats in st ruct module
syntax as well as multi-dimensional representations.

toreadonly ()
Return a readonly version of the memoryview object. The original memoryview object is unchanged.

>>> m = memoryview (bytearray(b'abc'))

>>> mm = m.toreadonly ()

>>> mm.tolist ()

[89, 98, 99]

>>> mm[0] = 42

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError: cannot modify read-only memory

>>> m[0] = 43

>>> mm.tolist ()

[43, 98, 99]

New in version 3.8.

release ()
Release the underlying buffer exposed by the memoryview object. Many objects take special actions when
aview is held on them (for example, a byt earray would temporarily forbid resizing); therefore, calling
release() is handy to remove these restrictions (and free any dangling resources) as soon as possible.

After this method has been called, any further operation on the view raises a ValueError (except
release () itself which can be called multiple times):

>>> m = memoryview (b'abc')
>>> m.release()
>>> m[0]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
ValueError: operation forbidden on released memoryview object

The context management protocol can be used for a similar effect, using the with statement:

>>> with memoryview (b'abc') as m:
m[0]

97

>>> m[0]

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: operation forbidden on released memoryview object

New in version 3.2.

cast (format[, shape])
Cast a memoryview to a new format or shape. shape defaultsto [byte_length//new_itemsizel],
which means that the result view will be one-dimensional. The return value is a new memoryview, but
the buffer itself is not copied. Supported casts are 1D -> C-contiguous and C-contiguous -> 1D.

The destination format is restricted to a single element native format in st ruct syntax. One of the
formats must be a byte format (‘B’, ‘b’ or ‘c’). The byte length of the result must be the same as the
original length.

4.8. Binary Sequence Types — bytes, bytearray, memoryview 69

The Python Library Reference, Release 3.8.20

Cast 1D/long to 1D/unsigned bytes:

>>> import array
>>> a = array.array('l’',
memoryview (a)

x.format

[1,2,3])
>>> x =
>>>
'll
>>>
8

>>>

X.itemsize

len (x)

>>> x.nbytes
24
>>> = x.cast ('B")
>>> y.format

'Bl

>>> y.itemsize

=

>>>
24
>>>
24

len(y)

y.nbytes

Cast 1D/unsigned bytes to 1D/char:

>>> b = bytearray(b'zyz")
>>> x = memoryview (b)
>>> x[0] = b'a'
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: invalid value for format
>>> y =

memoryview: "B"
x.cast('c")

>>> y[0] = b'a'

>>> Db

bytearray(b'ayz"')

Cast 1D/bytes to 3D/ints to 1D/signed char:

>>> import struct

buf = struct.pack("i"*12,
>>> x = memoryview (buf)
x.cast('i', shape=I[2,2,3])
.tolist ()
1, 21, [3,
.format

>>> *list (range(12)))

>>> vy

>>> y

(eeo,
>>> vy

v

4, 511, [le, 7, 8], [9, 10, 11]]]

i)
>>> y.itemsize

>>> len(y)

>>>
48
>>> 7z =

y.nbytes

y.cast('b")
>>> z.format
b
>>>
1

>>>
48

>>>

48

z.ltemsize

len(z)

z .nbytes

Cast 1D/unsigned long to 2D/unsigned long:

70

Chapter 4. Built-in Types

The Python Library Reference, Release 3.8.20

>>> pbuf = struct.pack("L"*6, *list (range(6)))
>>> x = memoryview (buf)

>>> y = x.cast('L', shape=[2,3])

>>> len(y)

2

>>> y.nbytes

48

>>> y.tolist ()
(o, 1, 21, 3, 4, 511

New in version 3.3.
Changed in version 3.5: The source format is no longer restricted when casting to a byte view.
There are also several readonly attributes available:

obj
The underlying object of the memoryview:

>>> b = bytearray(b'xyz"')
>>> m = memoryview (b)

>>> m.obj is b

True

New in version 3.3.

nbytes
nbytes == product (shape) * itemsize == len (m.tobytes()). This is the
amount of space in bytes that the array would use in a contiguous representation. It is not necessarily
equal to len (m):

>>> import array

>>> a = array.array('i', [1,2,3,4,5])
>>> m = memoryview(a)
>>> len (m)

5

>>> m.nbytes

20

>>> y = m[::2]

>>> len(y)

3

>>> y.nbytes

12

>>> len(y.tobytes())
12

Multi-dimensional arrays:

>>> import struct

>>> buf = struct.pack ("d"*12, *[1.5*x for x in range(12)])

>>> x = memoryview (buf)

>>> y = x.cast('d', shape=[3,4])

>>> y.tolist ()

(.o, 1.5, 3.0, 4.51, [6.0, 7.5, 9.0, 10.5], [12.0, 13.5, 15.0, 16.5]]
>>> len(y)

3

>>> y.nbytes

96

New in version 3.3.

readonly
A bool indicating whether the memory is read only.

4.8. Binary Sequence Types — bytes, bytearray, memoryview 71

The Python Library Reference, Release 3.8.20

format
A string containing the format (in st ruct module style) for each element in the view. A memoryview
can be created from exporters with arbitrary format strings, but some methods (e.g. tolist ()) are
restricted to native single element formats.

Changed in version 3.3: format 'B"' is now handled according to the struct module syntax. This means
that memoryview (b'abc') [0] == b'abc'[0] == 97.

itemsize
The size in bytes of each element of the memoryview:

>>> import array, struct

>>> m = memoryview (array.array ('H', [32000, 32001, 320021))
>>> m.itemsize

2

>>> m[0]

32000

>>> struct.calcsize('H') == m.itemsize

True

ndim
An integer indicating how many dimensions of a multi-dimensional array the memory represents.

shape
A tuple of integers the length of ndim giving the shape of the memory as an N-dimensional array.

Changed in version 3.3: An empty tuple instead of None when ndim = 0.

strides
A tuple of integers the length of ndim giving the size in bytes to access each element for each dimension
of the array.

Changed in version 3.3: An empty tuple instead of None when ndim = 0.

suboffsets
Used internally for PIL-style arrays. The value is informational only.

c_contiguous
A bool indicating whether the memory is C-contiguous.

New in version 3.3.

f_contiguous
A bool indicating whether the memory is Fortran contiguous.

New in version 3.3.

contiguous
A bool indicating whether the memory is contiguous.

New in version 3.3.

4.9 Set Types — set, frozenset

A set object is an unordered collection of distinct sashable objects. Common uses include membership testing,
removing duplicates from a sequence, and computing mathematical operations such as intersection, union, differ-
ence, and symmetric difference. (For other containers see the built-in dict, 1ist, and tuple classes, and the
collections module.)

Like other collections, sets support x in set, len(set),and for x in set. Beingan unordered collection,
sets do not record element position or order of insertion. Accordingly, sets do not support indexing, slicing, or other
sequence-like behavior.

There are currently two built-in set types, set and frozenset. The set type is mutable — the contents can be
changed using methods like add () and remove (). Since it is mutable, it has no hash value and cannot be used

72 Chapter 4. Built-in Types

The Python Library Reference, Release 3.8.20

as either a dictionary key or as an element of another set. The frozenset type is immutable and hashable — its
contents cannot be altered after it is created; it can therefore be used as a dictionary key or as an element of another
set.

Non-empty sets (not frozensets) can be created by placing a comma-separated list of elements within braces, for
example: {'jack', 'sjoerd'}, in addition to the set constructor.

The constructors for both classes work the same:

class set ([iterable])

class frozenset ([iterable])
Return a new set or frozenset object whose elements are taken from iferable. The elements of a set must be
hashable. To represent sets of sets, the inner sets must be frozenset objects. If iterable is not specified, a
new empty set is returned.

Sets can be created by several means:
o Use a comma-separated list of elements within braces: { ' jack', 'sjoerd'}
o Use a set comprehension: {c for ¢ in 'abracadabra' if ¢ not in 'abc'}
o Use the type constructor: set (), set ('foobar'),set(['a', 'b', 'foo'l)
Instances of set and frozenset provide the following operations:

len(s)
Return the number of elements in set s (cardinality of s).

X in s
Test x for membership in s.

x not in s
Test x for non-membership in s.

isdisjoint (other)
Return True if the set has no elements in common with other. Sets are disjoint if and only if their
intersection is the empty set.

issubset (other)
set <= other
Test whether every element in the set is in other.

set < other
Test whether the set is a proper subset of other, thatis, set <= other and set != other.

issuperset (other)
set >= other
Test whether every element in other is in the set.

set > other
Test whether the set is a proper superset of other, that is, set >= other and set != other.

union (*others)
set | other |
Return a new set with elements from the set and all others.

intersection (*others)
set & other &
Return a new set with elements common to the set and all others.

difference (*others)
set - other -
Return a new set with elements in the set that are not in the others.

symmetric_difference (other)
set * other
Return a new set with elements in either the set or other but not both.

4.9. Set Types — set, frozenset 73

The Python Library Reference, Release 3.8.20

copy ()
Return a shallow copy of the set.

Note, the non-operator versions of union(), intersection(), difference(), and
symmetric_difference (), issubset (), and issuperset () methods will accept any iter-
able as an argument. In contrast, their operator based counterparts require their arguments to be sets.
This precludes error-prone constructions like set ('abc') & 'cbs' in favor of the more readable
set ('abc') .intersection('cbs').

Both set and frozenset support set to set comparisons. Two sets are equal if and only if every element
of each set is contained in the other (each is a subset of the other). A set is less than another set if and only if
the first set is a proper subset of the second set (is a subset, but is not equal). A set is greater than another set
if and only if the first set is a proper superset of the second set (is a superset, but is not equal).

Instances of set are compared to instances of frozenset based on their members. For ex-
ample, set ('abc') == frozenset ('abc') returns True and so does set ('abc') in
set ([frozenset ('abc')]).

The subset and equality comparisons do not generalize to a total ordering function. For example, any two
nonempty disjoint sets are not equal and are not subsets of each other, so all of the following return False:
a<b, a==Db, or a>b.

Since sets only define partial ordering (subset relationships), the output of the 1ist.sort () method is
undefined for lists of sets.

Set elements, like dictionary keys, must be hashable.

Binary operations that mix set instances with frozenset return the type of the first operand. For example:
frozenset ('ab') | set ('bc') returns an instance of frozenset.

The following table lists operations available for set that do not apply to immutable instances of frozenset:

update (*others)
set |= other |
Update the set, adding elements from all others.

intersection_update (*others)
set &= other &
Update the set, keeping only elements found in it and all others.

difference_update (*others)
set —= other |
Update the set, removing elements found in others.

symmetric_difference_update (other)
set “= other
Update the set, keeping only elements found in either set, but not in both.

add (elem)
Add element elem to the set.

remove (elem)
Remove element elem from the set. Raises KeyError if elem is not contained in the set.

discard (elem)
Remove element elem from the set if it is present.

pop ()
Remove and return an arbitrary element from the set. Raises KeyError if the set is empty.

clear ()
Remove all elements from the set.

Note, the non-operator versions of the update (), intersection_update (),
difference_update (), and symmetric_difference_update () methods will accept any
iterable as an argument.

74

Chapter 4. Built-in Types

The Python Library Reference, Release 3.8.20

Note, the elem argument to the __contains__ (), remove (), and discard () methods may be a set.
To support searching for an equivalent frozenset, a temporary one is created from elem.

4.10 Mapping Types — dict

A mapping object maps hashable values to arbitrary objects. Mappings are mutable objects. There is currently only
one standard mapping type, the dictionary. (For other containers see the built-in 1ist, set, and tuple classes,
and the collections module.)

A dictionary’s keys are almost arbitrary values. Values that are not hashable, that is, values containing lists, dictio-
naries or other mutable types (that are compared by value rather than by object identity) may not be used as keys.
Numeric types used for keys obey the normal rules for numeric comparison: if two numbers compare equal (such
as 1 and 1. 0) then they can be used interchangeably to index the same dictionary entry. (Note however, that since
computers store floating-point numbers as approximations it is usually unwise to use them as dictionary keys.)

Dictionaries can be created by placing a comma-separated list of key: wvalue pairs within braces, for exam-
ple: {'jack': 4098, 'sjoerd': 4127}or{4098: 'jack', 4127: 'sjoerd'},orbythedict
constructor.

class dict (**kwarg)

class dict (mapping, **kwarg)

class dict (iterable, **kwarg)
Return a new dictionary initialized from an optional positional argument and a possibly empty set of keyword
arguments.

Dictionaries can be created by several means:

o Use a comma-separated list of key: value pairs within braces: { ' jack': 4098, 'sjoerd':
4127} or {4098: 'jack', 4127: 'sjoerd'}

o Use a dict comprehension: {}, {x: x ** 2 for x in range (10)}

o« Use the type -constructor: dict (), dict([('foo', 100), ('bar', 200)1),
dict (foo=100, bar=200)

If no positional argument is given, an empty dictionary is created. If a positional argument is given and it is
a mapping object, a dictionary is created with the same key-value pairs as the mapping object. Otherwise,
the positional argument must be an iterable object. Each item in the iterable must itself be an iterable with
exactly two objects. The first object of each item becomes a key in the new dictionary, and the second object
the corresponding value. If a key occurs more than once, the last value for that key becomes the corresponding
value in the new dictionary.

If keyword arguments are given, the keyword arguments and their values are added to the dictionary created
from the positional argument. If a key being added is already present, the value from the keyword argument
replaces the value from the positional argument.

To illustrate, the following examples all return a dictionary equal to {"one": 1, "two": 2,

"three": 3}:

>>> a = dict (one=1, two=2, three=3)

>> b = {'one': 1, 'two': 2, 'three': 3}

>>> ¢ = dict(zip(['one', 'two', 'three'l, [1, 2, 31))
>>> d = dict([('two', 2), ('one', 1), ('three', 3)1])
>>> e = dict({'three': 3, 'one': 1, 'two': 2})

>>> a == b == c == d == e

True

Providing keyword arguments as in the first example only works for keys that are valid Python identifiers.
Otherwise, any valid keys can be used.

These are the operations that dictionaries support (and therefore, custom mapping types should support too):

4.10. Mapping Types — dict 75

The Python Library Reference, Release 3.8.20

list (d)
Return a list of all the keys used in the dictionary d.

len(d)
Return the number of items in the dictionary d.

d[key]
Return the item of d with key key. Raises a KeyError if key is not in the map.

If a subclass of dict defines a method __missing__ () and key is not present, the d [key] operation
calls that method with the key key as argument. The d[key] operation then returns or raises what-
ever is returned or raised by the _ _missing__ (key) call. No other operations or methods invoke
_ missing__ (). If _ missing__ () is not defined, KeyErrorisraised. _ missing__ ()
must be a method; it cannot be an instance variable:

>>> class Counter (dict):
def _ missing__ (self, key):

return 0O
>>> ¢ = Counter ()
>>> c['red']

0

>>> c['red'] += 1
>>> c['red']

The example above shows part of the implementation of collections.Counter. A different
__missing__ methodisused by collections.defaultdict.

d[key] = value
Set d [key] to value.

del dlkey]
Remove d [key] from d. Raises a KeyError if key is not in the map.

key in d
Return True if d has a key key, else False.

key not in d
Equivalent to not key in d.

iter(d)
Return an iterator over the keys of the dictionary. This is a shortcut for iter (d.keys ()).

clear ()
Remove all items from the dictionary.

copy ()
Return a shallow copy of the dictionary.

classmethod fromkeys (iterable[, value])
Create a new dictionary with keys from iferable and values set to value.

fromkeys () is a class method that returns a new dictionary. value defaults to None. All of the values
refer to just a single instance, so it generally doesn’t make sense for value to be a mutable object such as
an empty list. To get distinct values, use a dict comprehension instead.

get (key[, default])
Return the value for key if key is in the dictionary, else default. If default is not given, it defaults to None,
so that this method never raises a KeyError.

items ()
Return a new view of the dictionary’s items ((key, wvalue) pairs). See the documentation of view
objects.

keys ()
Return a new view of the dictionary’s keys. See the documentation of view objects.

76

Chapter 4. Built-in Types

The Python Library Reference, Release 3.8.20

pPop (key[, default])
If key is in the dictionary, remove it and return its value, else return default. If default is not given and
key is not in the dictionary, a KeyError is raised.

popitem ()
Remove and return a (key, wvalue) pair from the dictionary. Pairs are returned in LIFO (last-in,
first-out) order.

popitem () is useful to destructively iterate over a dictionary, as often used in set algorithms. If the
dictionary is empty, calling popitem () raises a KeyError.

Changed in version 3.7: LIFO order is now guaranteed. In prior versions, popitem () would return an
arbitrary key/value pair.

reversed (d)
Return a reverse iterator over the keys of the dictionary. This is a shortcut for reversed (d.keys ()).

New in version 3.8.

setdefault (key[, default])
If key is in the dictionary, return its value. If not, insert key with a value of default and return default.
default defaults to None.

update ([other])
Update the dictionary with the key/value pairs from other, overwriting existing keys. Return None.

update () accepts either another dictionary object or an iterable of key/value pairs (as tuples or other
iterables of length two). If keyword arguments are specified, the dictionary is then updated with those
key/value pairs: d.update (red=1, blue=2).

values ()
Return a new view of the dictionary’s values. See the documentation of view objects.

An equality comparison between one dict .values () view and another will always return False.
This also applies when comparing dict .values () to itself:

>>> d = {'a': 1}
>>> d.values () == d.values|()
False

Dictionaries compare equal if and only if they have the same (key, wvalue) pairs (regardless of ordering).
Order comparisons (‘<’, ‘<=’, >=’, >") raise TypeError.

Dictionaries preserve insertion order. Note that updating a key does not affect the order. Keys added after
deletion are inserted at the end.

>>> d = {"one": 1, "two": 2, "three": 3, "four": 4}
>>> d
{'one': 1, 'two': 2, 'three': 3, 'four': 4}

>>> list (d)
['one', 'two', 'three', 'four']
>>> list (d.values())

[1’ 2, 3’ 4}
>>> d["one"] = 42
>>> d

{'one': 42, 'two': 2, 'three': 3, 'four': 4}
>>> del d["two"]

>>> d["two"] = None
>>> d
{'one': 42, 'three': 3, 'four': 4, 'two': None}

Changed in version 3.7: Dictionary order is guaranteed to be insertion order. This behavior was an implemen-
tation detail of CPython from 3.6.

Dictionaries and dictionary views are reversible.

4.10. Mapping Types — dict 77

The Python Library Reference, Release 3.8.20

>>> d = {"one": 1, "two": 2, "three": 3, "four": 4}
>>> d
{'one': 1, 'two': 2, 'three': 3, 'four': 4}

>>> list (reversed (d))

['four', 'three', 'two', 'one']

>>> list (reversed(d.values()))

[4, 3, 2, 1]

>>> list (reversed(d.items()))

[("four', 4), ('three', 3), ('two', 2), ('one', 1)

Changed in version 3.8: Dictionaries are now reversible.
See also:

types.MappingProxyType can be used to create a read-only view of a dict.

4.10.1 Dictionary view objects

The objects returned by dict . keys (), dict.values () and dict.items () are view objects. They provide
a dynamic view on the dictionary’s entries, which means that when the dictionary changes, the view reflects these
changes.

Dictionary views can be iterated over to yield their respective data, and support membership tests:

len (dictview)
Return the number of entries in the dictionary.

iter (dictview)
Return an iterator over the keys, values or items (represented as tuples of (key, value)) in the dictionary.

Keys and values are iterated over in insertion order. This allows the creation of (value, key) pairs using
zip():pairs = zip(d.values (), d.keys()). Another way to create the same listispairs =
[(v, k) for (k, v) in d.items()].

Iterating views while adding or deleting entries in the dictionary may raise a Runt imeError or fail to iterate
over all entries.

Changed in version 3.7: Dictionary order is guaranteed to be insertion order.

X in dictview
Return True if x is in the underlying dictionary’s keys, values or items (in the latter case, x should be a (key,
value) tuple).

reversed (dictview)
Return a reverse iterator over the keys, values or items of the dictionary. The view will be iterated in reverse
order of the insertion.

Changed in version 3.8: Dictionary views are now reversible.

Keys views are set-like since their entries are unique and hashable. If all values are hashable, so that (key, value)
pairs are unique and hashable, then the items view is also set-like. (Values views are not treated as set-like since
the entries are generally not unique.) For set-like views, all of the operations defined for the abstract base class
collections.abc. Set are available (for example, ==, <, or ").

An example of dictionary view usage:

>>> dishes = {'eggs': 2, 'sausage': 1, 'bacon': 1, 'spam': 500}
>>> keys = dishes.keys ()
>>> values = dishes.values/()

>>> # iteration

>>>n = 0

>>> for val in values:
n += val

(continues on next page)

78 Chapter 4. Built-in Types

The Python Library Reference, Release 3.8.20

(continued from previous page)

>>> print (n)
504

>>> # keys and values are iterated over in the same order (insertion order)
>>> list (keys)

['eggs', 'sausage', 'bacon', 'spam']

>>> list (values)

(2, 1, 1, 500]

>>> # view objects are dynamic and reflect dict changes
>>> del dishes|['eggs']

>>> del dishes|['sausage']

>>> list (keys)

['"bacon', 'spam']

>>> # set operations

>>> keys & {'eggs', 'bacon', 'salad'}
{'bacon'}

>>> keys ©~ {'sausage', 'juice'}
{'juice', 'sausage', 'bacon', 'spam'}

4.11 Context Manager Types

Python’s with statement supports the concept of a runtime context defined by a context manager. This is imple-
mented using a pair of methods that allow user-defined classes to define a runtime context that is entered before the
statement body is executed and exited when the statement ends:

contextmanager.__enter__ ()
Enter the runtime context and return either this object or another object related to the runtime context. The
value returned by this method is bound to the identifier in the as clause of with statements using this context
manager.

An example of a context manager that returns itself is a file object. File objects return themselves from __en-
ter__() to allow open () to be used as the context expression in a with statement.

An example of a context manager that returns a related object is the one returned by decimal.
localcontext (). These managers set the active decimal context to a copy of the original decimal context
and then return the copy. This allows changes to be made to the current decimal context in the body of the
with statement without affecting code outside the with statement.

contextmanager.__exit__ (exc_type, exc_val, exc_tb)
Exit the runtime context and return a Boolean flag indicating if any exception that occurred should be sup-
pressed. If an exception occurred while executing the body of the with statement, the arguments contain the
exception type, value and traceback information. Otherwise, all three arguments are None.

Returning a true value from this method will cause the with statement to suppress the exception and continue
execution with the statement immediately following the with statement. Otherwise the exception continues
propagating after this method has finished executing. Exceptions that occur during execution of this method
will replace any exception that occurred in the body of the with statement.

The exception passed in should never be reraised explicitly - instead, this method should return a false value
to indicate that the method completed successfully and does not want to suppress the raised exception. This
allows context management code to easily detect whether ornotan ___exit__ () method has actually failed.

Python defines several context managers to support easy thread synchronisation, prompt closure of files or other
objects, and simpler manipulation of the active decimal arithmetic context. The specific types are not treated spe-
cially beyond their implementation of the context management protocol. See the context1ib module for some
examples.

4.11. Context Manager Types 79

The Python Library Reference, Release 3.8.20

Python’s generators and the context1ib. contextmanager decorator provide a convenient way to implement
these protocols. If a generator function is decorated with the context1ib. contextmanager decorator, it will
return a context manager implementing the necessary __enter__ () and __exit__ () methods, rather than the
iterator produced by an undecorated generator function.

Note that there is no specific slot for any of these methods in the type structure for Python objects in the Python/C
API. Extension types wanting to define these methods must provide them as a normal Python accessible method.
Compared to the overhead of setting up the runtime context, the overhead of a single class dictionary lookup is
negligible.

4.12 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

4.12.1 Modules

The only special operation on a module is attribute access: m. name, where m is a module and name accesses a name
defined in m’s symbol table. Module attributes can be assigned to. (Note that the import statement is not, strictly
speaking, an operation on a module object; import foo does not require a module object named foo to exist,
rather it requires an (external) definition for a module named foo somewhere.)

A special attribute of every module is ___dict__. This is the dictionary containing the module’s symbol table.
Modifying this dictionary will actually change the module’s symbol table, but direct assignment to the ___dict___
attribute is not possible (you can writem.__dict__['a'] = 1, which definesm. a to be 1, but you can’t write
m.__dict___ = {}). Modifying __dict___ directly is not recommended.

Modules built into the interpreter are written like this: <module 'sys' (built-in) >. If loaded from a file,
they are written as <module 'os' from '/usr/local/lib/pythonX.Y/os.pyc'>.

4.12.2 Classes and Class Instances

See objects and class for these.

4.12.3 Functions

Function objects are created by function definitions. The only operation on a function object is to call it:
func (argument-1list).

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the same
operation (to call the function), but the implementation is different, hence the different object types.

See function for more information.

4.12.4 Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append () on lists) and class instance methods. Built-in methods are described with the types that support them.

If you access a method (a function defined in a class namespace) through an instance, you get a special object: a
bound method (also called instance method) object. When called, it will add the se 1 f argument to the argument list.
Bound methods have two special read-only attributes: m.__self__ is the object on which the method operates,
and m.__ func__ is the function implementing the method. Calling m (arg-1, arg-2, ..., arg-n) is
completely equivalent to callingm.__ func__ (m.__self_ , arg-1, arg-2, ..., arg-n).

Like function objects, bound method objects support getting arbitrary attributes. However, since method attributes are
actually stored on the underlying function object (meth.__ func__), setting method attributes on bound methods

80 Chapter 4. Built-in Types

The Python Library Reference, Release 3.8.20

is disallowed. Attempting to set an attribute on a method results in an At t ributeError being raised. In order
to set a method attribute, you need to explicitly set it on the underlying function object:

>>> class C:
def method(self):
pass
>>> ¢ = C()
>>> c.method.whoami = 'my name is method' # can't set on the method
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'method' object has no attribute 'whoami'
>>> c.method. func_ .whoami = 'my name is method'
>>> c.method.whoami
'my name is method'

See types for more information.

4.12.5 Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a
function body. They differ from function objects because they don’t contain a reference to their global execution
environment. Code objects are returned by the built-in compile () function and can be extracted from function
objects through their __code___ attribute. See also the code module.

Accessing ___code___raises an auditing event object .__getattr__ witharguments objand"__code__".

A code object can be executed or evaluated by passing it (instead of a source string) to the exec () or eval ()
built-in functions.

See types for more information.

4.12.6 Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in function t ype (). There
are no special operations on types. The standard module ¢ ypes defines names for all standard built-in types.

Types are written like this: <class 'int'>.

4.12.7 The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations. There is
exactly one null object, named None (a built-in name). type (None) () produces the same singleton.

It is written as None.

4.12.8 The Ellipsis Object

This object is commonly used by slicing (see slicings). It supports no special operations. There is exactly one ellipsis
object, named £11ipsis (a built-in name). type (E11ipsis) () produces the £111ipsis singleton.

Itis writtenas El11ipsisor....

4.12. Other Built-in Types 81

The Python Library Reference, Release 3.8.20

4.12.9 The Notimplemented Object

This object is returned from comparisons and binary operations when they are asked to operate on types
they don’t support. See comparisons for more information. There is exactly one Not Implemented object.
type (NotImplemented) () produces the singleton instance.

It is written as Not Implemented.

4.12.10 Boolean Values

Boolean values are the two constant objects False and True. They are used to represent truth values (although
other values can also be considered false or true). In numeric contexts (for example when used as the argument to an
arithmetic operator), they behave like the integers 0 and 1, respectively. The built-in function bool () can be used
to convert any value to a Boolean, if the value can be interpreted as a truth value (see section Truth Value Testing
above).

They are written as False and True, respectively.

4.12.11 Internal Objects

See types for this information. It describes stack frame objects, traceback objects, and slice objects.

4.13 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant. Some of
these are not reported by the dir () built-in function.

object.__dict_
A dictionary or other mapping object used to store an object’s (writable) attributes.

instance.__class___
The class to which a class instance belongs.

class.__bases___
The tuple of base classes of a class object.

definition.__name___
The name of the class, function, method, descriptor, or generator instance.

definition._ _qualname_
The qualified name of the class, function, method, descriptor, or generator instance.

New in version 3.3.

class.__mro

This attribute is a tuple of classes that are considered when looking for base classes during method resolution.

class.mro ()
This method can be overridden by a metaclass to customize the method resolution order for its instances. It is
called at class instantiation, and its result is stored in ___mro_

class.__subclasses__ ()
Each class keeps a list of weak references to its immediate subclasses. This method returns a list of all those
references still alive. Example:

>>> int._ subclasses__ ()
[<class 'bool'>]

82 Chapter 4. Built-in Types

The Python Library Reference, Release 3.8.20

4.14 Integer string conversion length limitation

CPython has a global limit for converting between int and st r to mitigate denial of service attacks. This limit
only applies to decimal or other non-power-of-two number bases. Hexadecimal, octal, and binary conversions are
unlimited. The limit can be configured.

The int type in CPython is an arbitrary length number stored in binary form (commonly known as a “bignum”).
There exists no algorithm that can convert a string to a binary integer or a binary integer to a string in linear time, unless
the base is a power of 2. Even the best known algorithms for base 10 have sub-quadratic complexity. Converting a
large value suchas int ('1' * 500_000) can take over a second on a fast CPU.

Limiting conversion size offers a practical way to avoid CVE-2020-10735.

The limit is applied to the number of digit characters in the input or output string when a non-linear conversion
algorithm would be involved. Underscores and the sign are not counted towards the limit.

When an operation would exceed the limit, a ValueError is raised:

>>> import sys
>>> sys.set_int_max_str_digits (4300) # Illustrative, this is the default.
>>> = int ('2' * 5432)

Traceback (most recent call last):

ValueError: Exceeds the limit (4300) for integer string conversion: value has 5432.
—digits; use sys.set_int_max_str_digits() to increase the limit.

>>> 1 = int('2' * 4300)

>>> len(str(i))

4300

>>> 1 _squared = i*i

>>> len(str (i_squared))

Traceback (most recent call last):

ValueError: Exceeds the limit (4300) for integer string conversion: value has 8599.
—digits; use sys.set_int_max_str_digits() to increase the limit.

>>> len (hex (i_squared))

7144

>>> assert int (hex (i_squared), base=16) == 1*i1 # Hexadecimal is unlimited.

The default limit is 4300 digits as provided in sys. int_info.default_max_str_digits. Thelowestlimit
that can be configured is 640 digits as provided in sys.int_info.str_digits_check_threshold.

Verification:

>>> import sys

>>> assert sys.int_info.default_max_str_digits == 4300, sys.int_info

>>> assert sys.int_info.str_digits_check_threshold == 640, sys.int_info

>>> msg = int ('578966293710682886880994035146873798396722250538762761564"
'9252925514383915483333812743580549779436104706260696366600"
'571186405732") .to_bytes (53, 'big'")

New in version 3.8.14.

4.14. Integer string conversion length limitation 83

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2020-10735

The Python Library Reference, Release 3.8.20

4.14.1 Affected APIs

The limitation only applies to potentially slow conversions between int and str or bytes:
e int (string) with default base 10.
e int (string, base) for all bases that are not a power of 2.
e str (integer).
e repr (integer).

« any other string conversion to base 10, for example £"{integer}", "{}".format (integer), or
b"$d" % integer.

The limitations do not apply to functions with a linear algorithm:
e int (string, base) withbase 2, 4, 8, 16, or 32.
e int.from bytes () and int.to_bytes ().
e hex(),oct (),bin().
o Format Specification Mini-Language for hex, octal, and binary numbers.
e strto float.

e strtodecimal.Decimal.

4.14.2 Configuring the limit

Before Python starts up you can use an environment variable or an interpreter command line flag to configure the
limit:

e PYTHONINTMAXSTRDIGITS,e.g. PYTHONINTMAXSTRDIGITS=640 python3to set the limit to 640
or PYTHONINTMAXSTRDIGITS=0 python3 to disable the limitation.

e —X int_max_str_digits,e.g python3 -X int_max_str_digits=640

e sys.flags.int_max_str_digits contains the value of PYTHONINTMAXSTRDIGITS or —-X
int_max_str_digits. If both the env var and the —X option are set, the —X option takes precedence. A
value of -/ indicates that both were unset, thusa value of sys.int_info.default_max_str_digits
was used during initialization.

From code, you can inspect the current limit and set a new one using these sys APIs:

e sys.get_int_max_str_digits() and sys.set_int_max_str_digits () are a getter and
setter for the interpreter-wide limit. Subinterpreters have their own limit.

Information about the default and minimum can be found in sys. int_info:
e sys.int_info.default_max_str_digits isthe compiled-in default limit.

e sys.int_info.str_digits_check_threshold is the lowest accepted value for the limit (other
than 0 which disables it).

New in version 3.8.14.

Caution: Setting a low limit can lead to problems. While rare, code exists that contains integer constants in
decimal in their source that exceed the minimum threshold. A consequence of setting the limit is that Python
source code containing decimal integer literals longer than the limit will encounter an error during parsing, usually
at startup time or import time or even at installation time - anytime an up to date . pyc does not already exist for
the code. A workaround for source that contains such large constants is to convert them to 0x hexadecimal form
as it has no limit.

84 Chapter 4. Built-in Types

The Python Library Reference, Release 3.8.20

to precompile . py sources to . pyc files.

Test your application thoroughly if you use a low limit. Ensure your tests run with the limit set early via the
environment or flag so that it applies during startup and even during any installation step that may invoke Python

4.14.3 Recommended configuration

The default sys.int_info.default_max_str_digits isexpected to be reasonable for most applications.
If your application requires a different limit, set it from your main entry point using Python version agnostic code as

these APIs were added in security patch releases in versions before 3.11.

Example:

>>> import sys

>>> if hasattr(sys, "set_int_max_str_digits"):
upper_bound = 68000
lower_bound = 4004
current_limit = sys.get_int_max_str_digits()

if current_limit == 0 or current_limit > upper_bound:

sys.set_int_max_str_digits (upper_bound)
elif current_limit < lower_bound:
sys.set_int_max_str_digits (lower_bound)

If you need to disable it entirely, set it to O.

4.14. Integer string conversion length limitation

85

The Python Library Reference, Release 3.8.20

86 Chapter 4. Built-in Types

CHAPTER
FIVE

BUILT-IN EXCEPTIONS

In Python, all exceptions must be instances of a class that derives from BaseException. Ina t ry statement with
an except clause that mentions a particular class, that clause also handles any exception classes derived from that
class (but not exception classes from which iz is derived). Two exception classes that are not related via subclassing
are never equivalent, even if they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where mentioned,
they have an “associated value” indicating the detailed cause of the error. This may be a string or a tuple of several
items of information (e.g., an error code and a string explaining the code). The associated value is usually passed as
arguments to the exception class’s constructor.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition
“just like” the situation in which the interpreter raises the same exception; but beware that there is nothing to prevent
user code from raising an inappropriate error.

The built-in exception classes can be subclassed to define new exceptions; programmers are encouraged to derive new
exceptions from the Except i on class or one of its subclasses, and not from BaseExcept i on. More information
on defining exceptions is available in the Python Tutorial under tut-userexceptions.

When raising (or re-raising) an exception in an except or finally clause __ context__ is automatically set
to the last exception caught; if the new exception is not handled the traceback that is eventually displayed will include
the originating exception(s) and the final exception.

When raising a new exception (rather than using a bare raise to re-raise the exception currently being handled),
the implicit exception context can be supplemented with an explicit cause by using f rom with raise:

raise new_exc from original_exc

The expression following £ rom must be an exception or None. It willbe setas __cause__ on the raised exception.
Setting ___cause___ also implicitly sets the __suppress_context__ attribute to True, so that using raise
new_exc from None effectively replaces the old exception with the new one for display purposes (e.g. converting
KeyErrorto AttributeError), while leaving the old exception availablein ___context___ for introspection
when debugging.

The default traceback display code shows these chained exceptions in addition to the traceback for the exception itself.
An explicitly chained exception in __cause___is always shown when present. An implicitly chained exception in
__context__ isshownonlyif _ cause__ is Noneand __suppress_context__ is false.

In either case, the exception itself is always shown after any chained exceptions so that the final line of the traceback
always shows the last exception that was raised.

87

The Python Library Reference, Release 3.8.20

5.1 Base classes

The following exceptions are used mostly as base classes for other exceptions.

exception BaseException
The base class for all built-in exceptions. It is not meant to be directly inherited by user-defined classes (for
that, use Exception). If str () is called on an instance of this class, the representation of the argument(s)
to the instance are returned, or the empty string when there were no arguments.

args
The tuple of arguments given to the exception constructor. Some built-in exceptions (like OSError)
expect a certain number of arguments and assign a special meaning to the elements of this tuple, while
others are usually called only with a single string giving an error message.

with_traceback (1h)
This method sets tb as the new traceback for the exception and returns the exception object. It is usually
used in exception handling code like this:

try:

except SomeException:
tb = sys.exc_info () [2]
raise OtherException(...).with_traceback (tb)

exception Exception
All built-in, non-system-exiting exceptions are derived from this class. All user-defined exceptions should also
be derived from this class.

exception ArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic errors: OverflowError,
ZeroDivisionError, FloatingPointError.

exception BufferError
Raised when a buffer related operation cannot be performed.

exception LookupError
The base class for the exceptions that are raised when a key or index used on a mapping or sequence is invalid:
IndexError, KeyError. This can be raised directly by codecs. Iookup ().

5.2 Concrete exceptions

The following exceptions are the exceptions that are usually raised.

exception AssertionError
Raised when an assert statement fails.

exception AttributeError
Raised when an attribute reference (see attribute-references) or assignment fails. (When an object does not
support attribute references or attribute assignments at all, TypeError is raised.)

exception EOFError
Raised when the input () function hits an end-of-file condition (EOF) without reading any data. (N.B.:
the io.IOBase.read () and io. IOBase. readline () methods return an empty string when they hit
EOF.)

exception FloatingPointError
Not currently used.

exception GeneratorExit
Raised when a generator or coroutine is closed; see generator.close () and coroutine.close ().
It directly inherits from BaseExcept ion instead of Except ion since it is technically not an error.

88 Chapter 5. Built-in Exceptions

The Python Library Reference, Release 3.8.20

exception ImportError
Raised when the import statement has troubles trying to load a module. Also raised when the “from list” in
from ... import hasa name that cannot be found.

The name and path attributes can be set using keyword-only arguments to the constructor. When set they
represent the name of the module that was attempted to be imported and the path to any file which triggered
the exception, respectively.

Changed in version 3.3: Added the name and path attributes.

exception ModuleNotFoundError
A subclass of ITmportError which is raised by import when a module could not be located. It is also
raised when None is found in sys.modules.

New in version 3.6.

exception IndexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed
range; if an index is not an integer, TypeError is raised.)

exception KeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

exception KeyboardInterrupt
Raised when the user hits the interrupt key (normally Control-C or Delete). During execution, a check
for interrupts is made regularly. The exception inherits from BaseExcept ion so as to not be accidentally
caught by code that catches Except i on and thus prevent the interpreter from exiting.

exception MemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting some objects).
The associated value is a string indicating what kind of (internal) operation ran out of memory. Note that
because of the underlying memory management architecture (C’'s malloc () function), the interpreter may
not always be able to completely recover from this situation; it nevertheless raises an exception so that a stack
traceback can be printed, in case a run-away program was the cause.

exception NameError
Raised when a local or global name is not found. This applies only to unqualified names. The associated value
is an error message that includes the name that could not be found.

exception NotImplementedError
This exception is derived from Runt imeError. In user defined base classes, abstract methods should raise
this exception when they require derived classes to override the method, or while the class is being developed
to indicate that the real implementation still needs to be added.

Note: It should not be used to indicate that an operator or method is not meant to be supported at all — in that
case either leave the operator / method undefined or, if a subclass, set it to None.

Note: NotImplementedError and Not Implemented are not interchangeable, even though they have
similar names and purposes. See Not Implemented for details on when to use it.

exception OSError ([arg])

exception OSError (errno, strerror[, ﬁlename[, winerror[, ﬁlenameZ]]])
This exception is raised when a system function returns a system-related error, including I/O failures such as
“file not found” or “disk full” (not for illegal argument types or other incidental errors).

The second form of the constructor sets the corresponding attributes, described below. The attributes default
to None if not specified. For backwards compatibility, if three arguments are passed, the args attribute
contains only a 2-tuple of the first two constructor arguments.

The constructor often actually returns a subclass of OSError, as described in OS exceptions below. The par-
ticular subclass depends on the final e rrno value. This behaviour only occurs when constructing OSError
directly or via an alias, and is not inherited when subclassing.

5.2. Concrete exceptions 89

The Python Library Reference, Release 3.8.20

errno
A numeric error code from the C variable errno.

winerror
Under Windows, this gives you the native Windows error code. The e rrno attribute is then an approx-
imate translation, in POSIX terms, of that native error code.

Under Windows, if the winerror constructor argument is an integer, the e rrno attribute is determined
from the Windows error code, and the errno argument is ignored. On other platforms, the winerror
argument is ignored, and the winerror attribute does not exist.

strerror
The corresponding error message, as provided by the operating system. It is formatted by the C functions
perror () under POSIX, and FormatMessage () under Windows.

filename

filename2
For exceptions that involve a file system path (such as open () or os.unlink ()), filename is
the file name passed to the function. For functions that involve two file system paths (such as os.
rename ()), £ilenameZ2 corresponds to the second file name passed to the function.

Changed in version 3.3: EnvironmentError, IOError, WindowsError, socket.error,
select.error and mmap.error have been merged into OSError, and the constructor may return
a subclass.

Changed in version 3.4: The i 1 ename attribute is now the original file name passed to the function, instead
of the name encoded to or decoded from the filesystem encoding. Also, the filename2 constructor argument
and attribute was added.

exception OverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for integers
(which would rather raise MemoryError than give up). However, for historical reasons, OverflowError is
sometimes raised for integers that are outside a required range. Because of the lack of standardization of
floating point exception handling in C, most floating point operations are not checked.

exception RecursionError
This exception is derived from Runt imeError. It is raised when the interpreter detects that the maximum
recursion depth (see sys.getrecursionlimit ()) is exceeded.

New in version 3.5: Previously, a plain Runt imeError was raised.

exception ReferenceError
This exception is raised when a weak reference proxy, created by the weakref. proxy () function, is used to
access an attribute of the referent after it has been garbage collected. For more information on weak references,
see the weak ref module.

exception RuntimeError
Raised when an error is detected that doesn’t fall in any of the other categories. The associated value is a string
indicating what precisely went wrong.

exception StoplIteration
Raised by built-in function next () and an iterator’s __next___ () method to signal that there are no further
items produced by the iterator.

The exception object has a single attribute value, which is given as an argument when constructing the
exception, and defaults to None.

When a generator or coroutine function returns, a new StopIteration instance is raised, and the value
returned by the function is used as the value parameter to the constructor of the exception.

If a generator code directly or indirectly raises StopIteration, itis converted into a RuntimeError
(retaining the StopTIteration as the new exception’s cause).

Changed in version 3.3: Added value attribute and the ability for generator functions to use it to return a
value.

90 Chapter 5. Built-in Exceptions

The Python Library Reference, Release 3.8.20

Changed in version 3.5: Introduced the RuntimeError transformation via from __ future_ import
generator_stop, see PEP 479.

Changed in version 3.7: Enable PEP 479 for all code by default: a StopIteration error raised in a
generator is transformed into a Runt imeError.

exception StopAsyncIteration
Must be raised by __anext___ () method of an asynchronous iterator object to stop the iteration.

New in version 3.5.

exception SyntaxError
Raised when the parser encounters a syntax error. This may occur in an import statement, in a call to the
built-in functions exec () or eval (), or when reading the initial script or standard input (also interactively).

The str () of the exception instance returns only the error message.

filename
The name of the file the syntax error occurred in.

lineno
Which line number in the file the error occurred in. This is 1-indexed: the first line in the file has a
linenoof 1.

offset
The column in the line where the error occurred. This is 1-indexed: the first character in the line has an
offset of 1.

text
The source code text involved in the error.

exception IndentationError
Base class for syntax errors related to incorrect indentation. This is a subclass of SyntaxError.

exception TabError
Raised when indentation contains an inconsistent use of tabs and spaces. This is a subclass of
IndentationError.

exception SystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to
abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version
of the Python interpreter (sys.version;itis also printed at the start of an interactive Python session), the
exact error message (the exception’s associated value) and if possible the source of the program that triggered
the error.

exception SystemExit

This exception is raised by the sys.exit () function. It inherits from BaseException instead of
Exception so that it is not accidentally caught by code that catches Except i on. This allows the exception
to properly propagate up and cause the interpreter to exit. When it is not handled, the Python interpreter exits;
no stack traceback is printed. The constructor accepts the same optional argument passed to sys.exit ().
If the value is an integer, it specifies the system exit status (passed to C’s exit () function); if it is None,
the exit status is zero; if it has another type (such as a string), the object’s value is printed and the exit status
is one.

Acallto sys.exit () is translated into an exception so that clean-up handlers (finally clauses of try
statements) can be executed, and so that a debugger can execute a script without running the risk of losing
control. The os._exit () function can be used if it is absolutely positively necessary to exit immediately
(for example, in the child process after a call to os. fork ()).

code
The exit status or error message that is passed to the constructor. (Defaults to None.)

exception TypeError
Raised when an operation or function is applied to an object of inappropriate type. The associated value is a
string giving details about the type mismatch.

5.2. Concrete exceptions 91

https://www.python.org/dev/peps/pep-0479
https://www.python.org/dev/peps/pep-0479

The Python Library Reference, Release 3.8.20

This exception may be raised by user code to indicate that an attempted operation on an object is not sup-
ported, and is not meant to be. If an object is meant to support a given operation but has not yet provided an
implementation, Not ImplementedError is the proper exception to raise.

Passing arguments of the wrong type (e.g. passing a 1ist when an int is expected) should result in a
TypeError, but passing arguments with the wrong value (e.g. a number outside expected boundaries) should
resultina ValueError.

exception UnboundlLocalError
Raised when a reference is made to a local variable in a function or method, but no value has been bound to
that variable. This is a subclass of NameError.

exception UnicodeError
Raised when a Unicode-related encoding or decoding error occurs. It is a subclass of ValueError.

UnicodeError has attributes that describe the encoding or decoding error. For example, err.
object [err.start:err.end] gives the particular invalid input that the codec failed on.

encoding
The name of the encoding that raised the error.

reason
A string describing the specific codec error.

object
The object the codec was attempting to encode or decode.

start
The first index of invalid data in object.

end
The index after the last invalid data in ob ject.

exception UnicodeEncodeError
Raised when a Unicode-related error occurs during encoding. It is a subclass of UnicodeError.

exception UnicodeDecodeError
Raised when a Unicode-related error occurs during decoding. It is a subclass of UnicodeError.

exception UnicodeTranslateError
Raised when a Unicode-related error occurs during translating. It is a subclass of UnicodeError.

exception ValueError
Raised when an operation or function receives an argument that has the right type but an inappropriate value,
and the situation is not described by a more precise exception such as TndexError.

exception ZeroDivisionError
Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

The following exceptions are kept for compatibility with previous versions; starting from Python 3.3, they are aliases
of OSError.

exception EnvironmentError
exception IOError

exception WindowsError
Only available on Windows.

92 Chapter 5. Built-in Exceptions

The Python Library Reference, Release 3.8.20

5.2.1 OS exceptions

The following exceptions are subclasses of OSError, they get raised depending on the system error code.

exception BlockingIOError
Raised when an operation would block on an object (e.g. socket) set for non-blocking operation. Corresponds
to errno EAGAIN, EALREADY, EWOULDBLOCK and EINPROGRESS.

In addition to those of OSError, BlockingIOError can have one more attribute:

characters_written
An integer containing the number of characters written to the stream before it blocked. This attribute is
available when using the buffered I/O classes from the i 0 module.

exception ChildProcessError
Raised when an operation on a child process failed. Corresponds to errno ECHILD.

exception ConnectionError
A base class for connection-related issues.

Subclasses are BrokenPipeError, ConnectionAbortedError, ConnectionRefusedError
and ConnectionResetError.

exception BrokenPipeError
A subclass of ConnectionError, raised when trying to write on a pipe while the other end has been
closed, or trying to write on a socket which has been shutdown for writing. Corresponds to errno EPIPE
and ESHUTDOWN.

exception ConnectionAbortedError
A subclass of ConnectionError, raised when a connection attempt is aborted by the peer. Corresponds
to errno ECONNABORTED

exception ConnectionRefusedError
A subclass of ConnectionError, raised when a connection attempt is refused by the peer. Corresponds
to errno ECONNREFUSED.

exception ConnectionResetError
A subclass of ConnectionError, raised when a connection is reset by the peer. Corresponds to errno
ECONNRESET.

exception FileExistsError
Raised when trying to create a file or directory which already exists. Corresponds to errno EEXIST.

exception FileNotFoundError
Raised when a file or directory is requested but doesn’t exist. Corresponds to errno ENOENT.

exception InterruptedError
Raised when a system call is interrupted by an incoming signal. Corresponds to errno EINTR.

Changed in version 3.5: Python now retries system calls when a syscall is interrupted by a signal, except if the
signal handler raises an exception (see PEP 475 for the rationale), instead of raising TnterruptedError.

exception IsADirectoryError
Raised when a file operation (such as os. remove ()) is requested on a directory. Corresponds to errno
EISDIR.

exception NotADirectoryError
Raised when a directory operation (such as os. 1istdir ()) is requested on something which is not a di-
rectory. Corresponds to errno ENOTDIR.

exception PermissionError
Raised when trying to run an operation without the adequate access rights - for example filesystem permissions.
Corresponds to errno EACCES and EPERM.

exception ProcessLookupError
Raised when a given process doesn’t exist. Corresponds to errno ESRCH.

5.2. Concrete exceptions 93

https://www.python.org/dev/peps/pep-0475

The Python Library Reference, Release 3.8.20

exception TimeoutError
Raised when a system function timed out at the system level. Corresponds to errno ETIMEDOUT.

New in version 3.3: All the above OSError subclasses were added.
See also:

PEP 3151 - Reworking the OS and 10O exception hierarchy

5.3 Warnings
The following exceptions are used as warning categories; see the Warning Categories documentation for more details.

exception Warning
Base class for warning categories.

exception UserWarning
Base class for warnings generated by user code.

exception DeprecationWarning
Base class for warnings about deprecated features when those warnings are intended for other Python devel-
opers.

exception PendingDeprecationWarning
Base class for warnings about features which are obsolete and expected to be deprecated in the future, but are
not deprecated at the moment.

This class is rarely used as emitting a warning about a possible upcoming deprecation is unusual, and
DeprecationlWarning is preferred for already active deprecations.

exception SyntaxWarning
Base class for warnings about dubious syntax.

exception RuntimeWarning
Base class for warnings about dubious runtime behavior.

exception FutureWarning
Base class for warnings about deprecated features when those warnings are intended for end users of applica-
tions that are written in Python.

exception ImportWarning
Base class for warnings about probable mistakes in module imports.

exception UnicodeWarning
Base class for warnings related to Unicode.

exception BytesWarning
Base class for warnings related to bytes and bytearray.

exception ResourceWarning
Base class for warnings related to resource usage. Ignored by the default warning filters.

New in version 3.2.

94 Chapter 5. Built-in Exceptions

https://www.python.org/dev/peps/pep-3151

The Python Library Reference, Release 3.8.20

5.4 Exception hierarchy

The class hierarchy for built-in exceptions is:

BaseException
+-— SystemExit
+—— KeyboardInterrupt
+-— GeneratorExit

+-— Exception
+-— Stoplteration
+-— StopAsynclteration
+-— ArithmeticError

| +-— FloatingPointError
| +—— OverflowError

| +—-— ZeroDivisionError

+-— AssertionError

+-— AttributeError

+-— BufferError

+—— EOFError

+-—— ImportError

| +—-— ModuleNotFoundError

+—— LookupError

| +—— IndexError

| +-— KeyError

+—— MemoryError

+—-— NameError

| +—-— UnboundLocalError

+—— OSError

| +-— BlockingIOError

| +—— ChildProcessError

| +-— ConnectionError

| | +-— BrokenPipeError

| | +—— ConnectionAbortedError
| | +—— ConnectionRefusedError
| | +—-— ConnectionResetError
| +—— FileExistsError

| +-— FileNotFoundError

| +-— InterruptedError

| +-— IsADirectoryError

| +-— NotADirectoryError

| +—-— PermissionError

| +—— ProcessLookupError

| +-— TimeoutError

+-— ReferenceError

+-— RuntimeError

| +—— NotImplementedError

\ +-— RecursionError

+—-— SyntaxError

| +-— IndentationError

| +—-— TabError

+—— SystemError

+—-— TypeError

+-— ValueError

| +—— UnicodeError

| +—— UnicodeDecodeError
\ +-— UnicodeEncodeError
| +—— UnicodeTranslateError
+-— Warning

+—— DeprecationWarning

+-— PendingDeprecationWarning
+-— RuntimeWarning

+-— SyntaxWarning

(continues on next page)

5.4. Exception hierarchy

95

The Python Library Reference, Release 3.8.20

(continued from previous page)

UserWarning
FutureWarning
ImportWarning
UnicodeWarning
BytesWarning
ResourceWarning

96

Chapter 5. Built-in Exceptions

CHAPTER
SIX

TEXT PROCESSING SERVICES

The modules described in this chapter provide a wide range of string manipulation operations and other text process-
ing services.

The codecs module described under Binary Data Services is also highly relevant to text processing. In addition,
see the documentation for Python’s built-in string type in Text Sequence Type — str.

6.1 string — Common string operations

Source code: Lib/string.py

See also:
Text Sequence Type — str

String Methods

6.1.1 String constants

The constants defined in this module are:

string.ascii_letters
The concatenation of the ascii_lowercaseand ascii_uppercase constants described below. This
value is not locale-dependent.

string.ascii_lowercase
The lowercase letters 'abcdefghijklmnopgrstuvwxyz'. This value is not locale-dependent and will
not change.

string.ascii_uppercase
The uppercase letters ' ABCDEFGHIJKLMNOPQRSTUVWXYZ '. This value is not locale-dependent and will
not change.

string.digits
The string '0123456789".

string.hexdigits
The string '0123456789abcdefABCDEF .

string.octdigits
The string '01234567".

string.punctuation
String of ASCII characters which are considered punctuation characters in the C locale: ! "#$%&"' () *+, —.
[p<=>2@ N1 { |}~

97

https://github.com/python/cpython/tree/3.8/Lib/string.py

The Python Library Reference, Release 3.8.20

string.printable
String of ASCII characters which are considered printable. This is a combination of digits,
ascii_letters, punctuation,and whitespace.

string.whitespace
A string containing all ASCII characters that are considered whitespace. This includes the characters space,
tab, linefeed, return, formfeed, and vertical tab.

6.1.2 Custom String Formatting

The built-in string class provides the ability to do complex variable substitutions and value formatting via the
format () method described in PEP 3101. The Formatter class in the st ring module allows you to cre-
ate and customize your own string formatting behaviors using the same implementation as the built-in format ()
method.

class string.Formatter
The Formatter class has the following public methods:

format (format_string, /, *args, **kwargs)
The primary API method. It takes a format string and an arbitrary set of positional and keyword argu-
ments. It is just a wrapper that calls viormat ().

Changed in version 3.7: A format string argument is now positional-only.

vformat (format_string, args, kwargs)
This function does the actual work of formatting. It is exposed as a separate function for cases where
you want to pass in a predefined dictionary of arguments, rather than unpacking and repacking the dic-
tionary as individual arguments using the *args and **kwargs syntax. vformat () does the work
of breaking up the format string into character data and replacement fields. It calls the various methods
described below.

In addition, the Format ter defines a number of methods that are intended to be replaced by subclasses:

parse (format_string)
Loop over the format_string and return an iterable of tuples (literal_text, field_name, format_spec, con-
version). This is used by vformat () to break the string into either literal text, or replacement fields.

The values in the tuple conceptually represent a span of literal text followed by a single replacement
field. If there is no literal text (which can happen if two replacement fields occur consecutively), then
literal_text will be a zero-length string. If there is no replacement field, then the values of field name,
format_spec and conversion will be None.

get_field (field _name, args, kwargs)
Given field_name as returned by parse () (see above), convert it to an object to be formatted. Returns
a tuple (obj, used_key). The default version takes strings of the form defined in PEP 3101, such as
“O[name]” or “label.title”. args and kwargs are as passed in to vformat (). The return value used_key
has the same meaning as the key parameter to get_value ().

get_value (key, args, kwargs)
Retrieve a given field value. The key argument will be either an integer or a string. If it is an integer,
it represents the index of the positional argument in args; if it is a string, then it represents a named
argument in kwargs.

The args parameter is set to the list of positional arguments to viormat (), and the kwargs parameter
is set to the dictionary of keyword arguments.

For compound field names, these functions are only called for the first component of the field name;
subsequent components are handled through normal attribute and indexing operations.

So for example, the field expression ‘0.name’ would cause get_value () to be called with a key argu-
ment of 0. The name attribute will be looked up after get_value () returns by calling the built-in
getattr () function.

98 Chapter 6. Text Processing Services

https://www.python.org/dev/peps/pep-3101
https://www.python.org/dev/peps/pep-3101

The Python Library Reference, Release 3.8.20

If the index or keyword refers to an item that does not exist, then an IndexError or KeyError
should be raised.

check_unused_args (used_args, args, kwargs)
Implement checking for unused arguments if desired. The arguments to this function is the set of all
argument keys that were actually referred to in the format string (integers for positional arguments, and
strings for named arguments), and a reference to the args and kwargs that was passed to vformat. The
set of unused args can be calculated from these parameters. check_unused_args () is assumed to
raise an exception if the check fails.

format_field (value, format_spec)
format_field () simply calls the global format () built-in. The method is provided so that sub-
classes can override it.

convert_field (value, conversion)
Converts the value (returned by get_ field ()) given a conversion type (as in the tuple returned by the
parse () method). The default version understands ‘s’ (str), ‘r’ (repr) and ‘@’ (ascii) conversion types.

6.1.3 Format String Syntax

The str. format () method and the Format ter class share the same syntax for format strings (although in the
case of Format ter, subclasses can define their own format string syntax). The syntax is related to that of formatted
string literals, but it is less sophisticated and, in particular, does not support arbitrary expressions.

Format strings contain “replacement fields” surrounded by curly braces { }. Anything that is not contained in braces
is considered literal text, which is copied unchanged to the output. If you need to include a brace character in the
literal text, it can be escaped by doubling: { { and } }.

The grammar for a replacement field is as follows:

replacement_field = "{" [field name] ["!" conversion] [":" format_spec]
field_name = arg_name ("." attribute_name | "[" element_index "]
arg_name = [identifier | digit+]

attribute_name = identifier

element_index = digit+ | index_string

index_string = <any source character except "]"> +

conversion = "r" | "s" | "a"

format_spec = <described in the next section>

In less formal terms, the replacement field can start with a field_name that specifies the object whose value is to be
formatted and inserted into the output instead of the replacement field. The field_name is optionally followed by a
conversion field, which is preceded by an exclamation point ' ! ', and a format_spec, which is preceded by a colon
' : '. These specify a non-default format for the replacement value.

See also the Format Specification Mini-Language section.

The field_name itself begins with an arg_name that is either a number or a keyword. If it’s a number, it refers to a
positional argument, and if it’s a keyword, it refers to a named keyword argument. If the numerical arg_names in a
format string are 0, 1, 2, ... in sequence, they can all be omitted (not just some) and the numbers 0, 1, 2, ... will be
automatically inserted in that order. Because arg_name is not quote-delimited, it is not possible to specify arbitrary
dictionary keys (e.g., the strings '10"' or ': -] ") within a format string. The arg_name can be followed by any
number of index or attribute expressions. An expression of the form ' .name' selects the named attribute using
getattr (), while an expression of the form ' [index] ' does an index lookup using __getitem_ _ ().

Changed in version 3.1: The positional argument specifiers can be omitted for st r. format (),so "{} {}"'.
format (a, b) isequivalentto '{0} {1}'.format (a, b).

Changed in version 3.4: The positional argument specifiers can be omitted for Formatter.

Some simple format string examples:

6.1. string— Common string operations 99

"}"

"y *

The Python Library Reference, Release 3.8.20

"First, thou shalt count to " # References first positional argument

"Bring me a " # Implicitly references the first positional.
—argument

"From to " # Same as "From {0} to {1}"

"My quest is " # References keyword argument 'name'

"Weight in tons " # 'weight' attribute of first positional arg
"Units destroyed: " # First element of keyword argument 'players'.

The conversion field causes a type coercion before formatting. Normally, the job of formatting a value is done
by the _ format__ () method of the value itself. However, in some cases it is desirable to force a type to be
formatted as a string, overriding its own definition of formatting. By converting the value to a string before calling
_ format__ (), the normal formatting logic is bypassed.

Three conversion flags are currently supported: ' ! s' which calls st = () on the value, ' ! r' which calls repr ()
and '!a' whichcalls ascii ().

Some examples:

"Harold's a clever " # Calls str() on the argument first
"Bring out the holy " # Calls repr() on the argument first
"More " # Calls ascii() on the argument first

The format_spec field contains a specification of how the value should be presented, including such details as field
width, alignment, padding, decimal precision and so on. Each value type can define its own “formatting mini-
language” or interpretation of the format_spec.

Most built-in types support a common formatting mini-language, which is described in the next section.

A format_spec field can also include nested replacement fields within it. These nested replacement fields may contain
a field name, conversion flag and format specification, but deeper nesting is not allowed. The replacement fields
within the format_spec are substituted before the format_spec string is interpreted. This allows the formatting of a
value to be dynamically specified.

See the Format examples section for some examples.

Format Specification Mini-Language

“Format specifications” are used within replacement fields contained within a format string to define how individ-
ual values are presented (see Format String Syntax and f-strings). They can also be passed directly to the built-in
format () function. Each formattable type may define how the format specification is to be interpreted.

Most built-in types implement the following options for format specifications, although some of the formatting options
are only supported by the numeric types.

A general convention is that an empty format specification produces the same result as if you had called st r () on
the value. A non-empty format specification typically modifies the result.

The general form of a standard format specifier is:

format_spec = [[filllalign] [sign] [#][0] [width] [grouping option] [.precision] [tyr
fill = <any character>

allgn := "<" | ">" I nwm_mn | nAmnNn

Slgn := "+" | n_mn I " n

width = digit+

grouping_option = L

precision = digit+

type ::= "b" | "c" | "d" | "e" ‘ "E" | "f" ‘ "F" | "g" | "G" | "n" | "O" I

If a valid align value is specified, it can be preceded by a fill character that can be any character and defaults to a
space if omitted. It is not possible to use a literal curly brace ("{” or “}”) as the fill character in a formatted string

100 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.8.20

literal or when using the str. format () method. However, it is possible to insert a curly brace with a nested
replacement field. This limitation doesn’t affect the format () function.

The meaning of the various alignment options is as follows:

Op- | Meaning

tion

'<' | Forces the field to be left-aligned within the available space (this is the default for most ob-
jects).

'>" | Forces the field to be right-aligned within the available space (this is the default for numbers).
="' | Forces the padding to be placed after the sign (if any) but before the digits. This is used
for printing fields in the form “+000000120°. This alignment option is only valid for numeric
types. It becomes the default when ‘0’ immediately precedes the field width.

'~ | Forces the field to be centered within the available space.

Note that unless a minimum field width is defined, the field width will always be the same size as the data to fill it, so
that the alignment option has no meaning in this case.

The sign option is only valid for number types, and can be one of the following:

Op- Meaning
tion
T indicates that a sign should be used for both positive as well as negative numbers.

- indicates that a sign should be used only for negative numbers (this is the default behavior).
space | indicates that a leading space should be used on positive numbers, and a minus sign on
negative numbers.

The '#' option causes the “alternate form” to be used for the conversion. The alternate form is defined differently
for different types. This option is only valid for integer, float and complex types. For integers, when binary, octal, or
hexadecimal output is used, this option adds the prefix respective '0b"', '0o"', or '0x"' to the output value. For
float and complex the alternate form causes the result of the conversion to always contain a decimal-point character,
even if no digits follow it. Normally, a decimal-point character appears in the result of these conversions only if a
digit follows it. In addition, for 'g' and 'G' conversions, trailing zeros are not removed from the result.

The ', ' option signals the use of a comma for a thousands separator. For a locale aware separator, use the 'n'
integer presentation type instead.

Changed in version 3.1: Added the ', ' option (see also PEP 378).

The '_' option signals the use of an underscore for a thousands separator for floating point presentation types and
for integer presentation type 'd'. For integer presentation types 'b', 'o', 'x', and 'X', underscores will be
inserted every 4 digits. For other presentation types, specifying this option is an error.

Changed in version 3.6: Added the '_' option (see also PEP 515).

width is a decimal integer defining the minimum total field width, including any prefixes, separators, and other for-
matting characters. If not specified, then the field width will be determined by the content.

When no explicit alignment is given, preceding the width field by a zero (' 0 ') character enables sign-aware zero-
padding for numeric types. This is equivalent to a fill character of ' 0 ' with an alignment type of '=".

The precision is a decimal number indicating how many digits should be displayed after the decimal point for a floating
point value formatted with ' £' and 'F ', or before and after the decimal point for a floating point value formatted
with "g"' or 'G'. For non-number types the field indicates the maximum field size - in other words, how many
characters will be used from the field content. The precision is not allowed for integer values.

Finally, the type determines how the data should be presented.

The available string presentation types are:

6.1. string— Common string operations 101

https://www.python.org/dev/peps/pep-0378
https://www.python.org/dev/peps/pep-0515

The Python Library Reference, Release 3.8.20

Type | Meaning

's! String format. This is the default type for strings and may be omitted.
None | Thesameas 's"'.

The available integer presentation types are:

Type Meaning

'"b' | Binary format. Outputs the number in base 2.

'c' | Character. Converts the integer to the corresponding unicode character before printing.

'd' | Decimal Integer. Outputs the number in base 10.

'o' | Octal format. Outputs the number in base 8.

! Hex format. Outputs the number in base 16, using lower-case letters for the digits above 9.
'X" | Hex format. Outputs the number in base 16, using upper-case letters for the digits above 9.
'n' | Number. This is the same as 'd"', except that it uses the current locale setting to insert the
appropriate number separator characters.

None| The same as 'd"'.

Xl

In addition to the above presentation types, integers can be formatted with the floating point presentation types listed

below (except 'n' and None). When doing so, f1oat () is used to convert the integer to a floating point number
before formatting.

The available presentation types for f1oat and Decimal values are:

102 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.8.20

Type Meaning

'e' | Scientific notation. For a given precision p, formats the number in scientific notation with the
letter ‘e’ separating the coefficient from the exponent. The coefficient has one digit before and
p digits after the decimal point, for a total of p + 1 significant digits. With no precision
given, uses a precision of 6 digits after the decimal point for £1oat, and shows all coefficient
digits for Decimal. If no digits follow the decimal point, the decimal point is also removed
unless the # option is used.

'E' | Scientific notation. Same as 'e ' except it uses an upper case ‘E’ as the separator character.

' £' | Fixed-point notation. For a given precision p, formats the number as a decimal number with
exactly p digits following the decimal point. With no precision given, uses a precision of
6 digits after the decimal point for f1oat, and uses a precision large enough to show all
coeflicient digits for Decimal. If no digits follow the decimal point, the decimal point is
also removed unless the # option is used.

'F' | Fixed-point notation. Same as ' £ ', but converts nan to NAN and inf to INF.

'g"' | General format. For a given precision p >= 1, this rounds the number to p significant digits
and then formats the result in either fixed-point format or in scientific notation, depending on
its magnitude. A precision of 0 is treated as equivalent to a precision of 1.

The precise rules are as follows: suppose that the result formatted with presentation type 'e'
and precision p—1 would have exponent exp. Then, if m <= exp < p, where m is -4
for floats and -6 for Decimals, the number is formatted with presentation type 'f' and
precision p—1-exp. Otherwise, the number is formatted with presentation type 'e' and
precision p—1. In both cases insignificant trailing zeros are removed from the significand,
and the decimal point is also removed if there are no remaining digits following it, unless the
"4 ' option is used.

With no precision given, uses a precision of 6 significant digits for f1oat. For Decimal,
the coefficient of the result is formed from the coefficient digits of the value; scientific notation
is used for values smaller than 1e-6 in absolute value and values where the place value of
the least significant digit is larger than 1, and fixed-point notation is used otherwise.

Positive and negative infinity, positive and negative zero, and nans, are formatted as inf,
—-inf, 0, -0 and nan respectively, regardless of the precision.

'G' | General format. Same as 'g' except switches to 'E' if the number gets too large. The
representations of infinity and NaN are uppercased, too.

'n' | Number. This is the same as 'g', except that it uses the current locale setting to insert the
appropriate number separator characters.

%' | Percentage. Multiplies the number by 100 and displays in fixed (' £ ') format, followed by a
percent sign.

None For float this is the same as 'g', except that when fixed-point notation is used to format
the result, it always includes at least one digit past the decimal point. The precision used is as
large as needed to represent the given value faithfully.

For Decimal, this is the same as either 'g' or 'G' depending on the value of context.
capitals for the current decimal context.

The overall effect is to match the output of st () as altered by the other format modifiers.

Format examples

This section contains examples of the st r. format () syntax and comparison with the old %-formatting.

In most of the cases the syntax is similar to the old $-formatting, with the addition of the { } and with : used instead
of %. For example, '$03.2f" can be translatedto '{: 03.2f}"'.

The new format syntax also supports new and different options, shown in the following examples.

Accessing arguments by position:

>>> ! , , '.format('a', 'b', 'c")
'a, b, c'
>>> ! , , '.format('a', 'b', 'c'") # 3.1+ only

(continues on next page)

6.1. string— Common string operations 103

The Python Library Reference, Release 3.8.20

(continued from previous page)

'a, b, ¢’

>>> '"J/2), {1}, {0}".format('a', 'b', 'c")

'c, b, a'

>>> "2}, {1}, {0}".format (*'abc"') # unpacking argument sequence

'c, b, a'

>>> "/[0}{1}{0}" . format ('abra', 'cad') # arguments' indices can be repeated
'abracadabra’

Accessing arguments by name:

>>> 'Coordinates: {latitude}, {longitude}'.format (latitude='37.24N', longitude='-
—115.81W")

'Coordinates: 37.24N, -115.81W'

>>> coord = {'latitude': '37.24N', 'longitude': '-115.81W'}

>>> 'Coordinates: {latitude}, {longitude}'.format (**coord)
'Coordinates: 37.24N, -115.81W'

Accessing arguments’ attributes:

>>> ¢ = 3-5j
>>> ('The complex number {0} is formed from the real part {0.real} '
'and the imaginary part {0.imag/}."').format (c)

'The complex number (3-57j) is formed from the real part 3.0 and the imaginary part.
‘—>_5 . O . '
>>> class Point:
def _ _init_ (self, x, y):
self.x, self.y = x, vy
def _ str_ (self):
return 'Point ({self.x}, {self.y})'.format (self=self)
>>> str (Point (4, 2))
'Point (4, 2)'

Accessing arguments’ items:

>>> coord = (3, 5)
>>> 'X: {0[0]}; Y: {0[1]}".format (coord)
'X: 3; Y: 5

Replacing $s and $r:

>>> "repr () shows quotes: {/r}; str() doesn't: {!s}".format ('testl', 'test2')
"repr () shows quotes: 'testl'; str() doesn't: test2"

Aligning the text and specifying a width:

>>> ' {:<30}"'".format ('left aligned')
'left aligned !

>>> ' {:>30}"' . format ('right aligned")
! right aligned'

>>> '{:730}" . format ('centered"')

! centered '

>>> '{:#730)" format ('centered") # use '"*' as a fill char
'***********centered***********'

Replacing $+£, $-f,and $ £ and specifying a sign:

>>> "/:4f); {:+f}" . format (3.14, -3.14) # show it always

'+3.140000; -3.140000"

>>> "/ f); {: £} . format(3.14, -3.14) # show a space for positive numbers
' 3.140000; -3.140000"

(continues on next page)

104 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.8.20

(continued from previous page)

>>> "/[:-f); {:-f}" . format(3.14, -3.14) # show only the minus —-—- same as '{:f};
—{:f}'
'3.140000; -3.140000"

Replacing $x and %o and converting the value to different bases:

>>> # format also supports binary numbers

>>> "int: {0:d}; hex: {0:x}; oct: {0:0}; bin: {0:b}".format (42)
'int: 42; hex: 2a; oct: 52; Dbin: 101010"'

>>> # with 0x, 0o, or 0Ob as prefix:

>>> "int: {0:d}; hex: {0:#x}; oct: {0:#0}; bin: {0:#b}".format (42)
'int: 42; hex: 0x2a; oct: 0052; Dbin: 0b101010"

Using the comma as a thousands separator:

>>> '/, }'" format (1234567890)
'1,234,567,890'

Expressing a percentage:

>>> points = 19
>>> total = 22
>>> 'Correct answers: {:.2%}'.format (points/total)

'Correct answers: 86.36%"

Using type-specific formatting:

>>> import datetime

>>> d = datetime.datetime (2010, 7, 4, 12, 15, 58)
>>> '{:%Y-%m-%d SH:%M:%S}'.format (d)

'2010-07-04 12:15:58"

Nesting arguments and more complex examples:

>>> for align, text in zip('<">', ['left', 'center', 'right']):
"{0:{fill}{align}l6}"'.format (text, fill=align, align=align)

'left<<<<!

'ANAANcenter AN

'>>>>>>>>>>>right!’

>>>

>>> octets = [192, 168, 0, 1]

>>> "/ 02X 02X) :02X){ 02X} . format (*octets)
'COAB0001"

>>> int (_, 16)

3232235521

>>>

>>> width = 5
>>> for num in range(5,12):
for base in 'dXob':
print ('{0: {width}{

print ()
5 5 5 101
6 6 6 110
7 7 7 111
8 8 10 1000
9 9 11 1001
10 A 12 1010
11 B 13 1011

>}} ' . format (num, base=base, width=width), end='

6.1. string — Common string operations

105

The Python Library Reference, Release 3.8.20

6.1.4 Template strings

Template strings provide simpler string substitutions as described in PEP 292. A primary use case for template
strings is for internationalization (i18n) since in that context, the simpler syntax and functionality makes it easier to
translate than other built-in string formatting facilities in Python. As an example of a library built on template strings

for 118n, see the flufl.i18n package.
Template strings support $-based substitutions, using the following rules:

e $$ is an escape; it is replaced with a single $.

e $identifier names a substitution placeholder matching a mapping key of "identifier". By default,
"identifier" isrestricted to any case-insensitive ASCII alphanumeric string (including underscores) that
starts with an underscore or ASCII letter. The first non-identifier character after the $ character terminates

this placeholder specification.

e ${identifier} isequivalentto $identifier. Itisrequired when valid identifier characters follow the

placeholder but are not part of the placeholder, such as "${noun}ification™".

Any other appearance of $ in the string will result in a ValueError being raised.

The st ring module provides a Template class that implements these rules. The methods of Template are:

class string.Template (femplate)
The constructor takes a single argument which is the template string.

substitute (mapping={}, /, **kwds)

Performs the template substitution, returning a new string. mapping is any dictionary-like object with keys
that match the placeholders in the template. Alternatively, you can provide keyword arguments, where
the keywords are the placeholders. When both mapping and kwds are given and there are duplicates, the

placeholders from kwds take precedence.

safe_substitute (mapping={}, /, **kwds)

Like substitute (), except that if placeholders are missing from mapping and kwds, instead of rais-
ing a KeyError exception, the original placeholder will appear in the resulting string intact. Also,
unlike with substitute (), any other appearances of the $ will simply return $ instead of raising

ValueError.

While other exceptions may still occur, this method is called “safe” because it always tries to return a
usable string instead of raising an exception. In another sense, safe_substitute () may be any-
thing other than safe, since it will silently ignore malformed templates containing dangling delimiters,

unmatched braces, or placeholders that are not valid Python identifiers.

Template instances also provide one public data attribute:

template

This is the object passed to the constructor’s femplate argument. In general, you shouldn’t change it, but

read-only access is not enforced.

Here is an example of how to use a Template:

>>> from string import Template

>>> s = Template ('Swho likes S$what')

>>> s.substitute (who="'tim', what='kung pao')
'tim likes kung pao'

>>> d = dict (who="tim")

>>> Template ('Give Swho $100') .substitute (d)
Traceback (most recent call last):

ValueError: Invalid placeholder in string: line 1, col 11
>>> Template ('Swho likes Swhat') .substitute (d)

Traceback (most recent call last):

KeyError: 'what'

(continues on next page)

106 Chapter 6. Text Processing Services

https://www.python.org/dev/peps/pep-0292
http://flufli18n.readthedocs.io/en/latest/

The Python Library Reference, Release 3.8.20

(continued from previous page)

>>> Template ('Swho likes Swhat') .safe_substitute (d)
'tim likes S$what'

Advanced usage: you can derive subclasses of Template to customize the placeholder syntax, delimiter character,
or the entire regular expression used to parse template strings. To do this, you can override these class attributes:

o delimiter — This is the literal string describing a placeholder introducing delimiter. The default value is $. Note
that this should not be a regular expression, as the implementation will call re.escape () on this string as
needed. Note further that you cannot change the delimiter after class creation (i.e. a different delimiter must
be set in the subclass’s class namespace).

e idpattern — This is the regular expression describing the pattern for non-braced placeholders. The default value
is the regular expression (?a:[_a-z][_a-z0-9]*). If this is given and braceidpattern is None this
pattern will also apply to braced placeholders.

Note: Since default flags is re . IGNORECASE, pattern [a—z] can match with some non-ASCII characters.
That’s why we use the local a flag here.

Changed in version 3.7: braceidpattern can be used to define separate patterns used inside and outside the
braces.

e braceidpattern — This is like idpattern but describes the pattern for braced placeholders. Defaults to None
which means to fall back to idpattern (i.e. the same pattern is used both inside and outside braces). If given,
this allows you to define different patterns for braced and unbraced placeholders.

New in version 3.7.

o flags — The regular expression flags that will be applied when compiling the regular expression used for recog-
nizing substitutions. The default value is re . IGNORECASE. Note that re . VERBOSE will always be added
to the flags, so custom idpatterns must follow conventions for verbose regular expressions.

New in version 3.2.

Alternatively, you can provide the entire regular expression pattern by overriding the class attribute pattern. If you
do this, the value must be a regular expression object with four named capturing groups. The capturing groups
correspond to the rules given above, along with the invalid placeholder rule:

« escaped - This group matches the escape sequence, e.g. $$, in the default pattern.

» named - This group matches the unbraced placeholder name; it should not include the delimiter in capturing
group.

e braced - This group matches the brace enclosed placeholder name; it should not include either the delimiter
or braces in the capturing group.

« invalid - This group matches any other delimiter pattern (usually a single delimiter), and it should appear last
in the regular expression.

6.1.5 Helper functions

string.capwords (s, sep=None)
Split the argument into words using str.split (), capitalize each word using str.capitalize (),
and join the capitalized words using st r. join (). If the optional second argument sep is absent or None,
runs of whitespace characters are replaced by a single space and leading and trailing whitespace are removed,
otherwise sep is used to split and join the words.

6.1. string— Common string operations 107

The Python Library Reference, Release 3.8.20

6.2 re — Regular expression operations

Source code: Lib/re.py

This module provides regular expression matching operations similar to those found in Perl.

Both patterns and strings to be searched can be Unicode strings (st r) as well as 8-bit strings (bytes). However,
Unicode strings and 8-bit strings cannot be mixed: that is, you cannot match a Unicode string with a byte pattern
or vice-versa; similarly, when asking for a substitution, the replacement string must be of the same type as both the
pattern and the search string.

Regular expressions use the backslash character (' \ ') to indicate special forms or to allow special characters to be
used without invoking their special meaning. This collides with Python’s usage of the same character for the same
purpose in string literals; for example, to match a literal backslash, one might have to write ' \\\\ ' as the pattern
string, because the regular expression must be \ \, and each backslash must be expressed as \ \ inside a regular Python
string literal. Also, please note that any invalid escape sequences in Python’s usage of the backslash in string literals
now generate a DeprecationWarning and in the future this will become a SyntaxError. This behaviour
will happen even if it is a valid escape sequence for a regular expression.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are not handled in any
special way in a string literal prefixed with 'r'. So r"\n" is a two-character string containing '\ ' and 'n"', while
"\n" is a one-character string containing a newline. Usually patterns will be expressed in Python code using this
raw string notation.

It is important to note that most regular expression operations are available as module-level functions and methods
on compiled regular expressions. The functions are shortcuts that don’t require you to compile a regex object first, but
miss some fine-tuning parameters.

See also:

The third-party regex module, which has an API compatible with the standard library re module, but offers additional
functionality and a more thorough Unicode support.

6.2.1 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you check if
a particular string matches a given regular expression (or if a given regular expression matches a particular string,
which comes down to the same thing).

Regular expressions can be concatenated to form new regular expressions; if A and B are both regular expressions,
then AB is also a regular expression. In general, if a string p matches A and another string ¢ matches B, the string
pg will match AB. This holds unless A or B contain low precedence operations; boundary conditions between A and
B; or have numbered group references. Thus, complex expressions can easily be constructed from simpler primitive
expressions like the ones described here. For details of the theory and implementation of regular expressions, consult
the Friedl book [Frie09], or almost any textbook about compiler construction.

A brief explanation of the format of regular expressions follows. For further information and a gentler presentation,
consult the regex-howto.

Regular expressions can contain both special and ordinary characters. Most ordinary characters, like 'A', 'a', or
'0 ', are the simplest regular expressions; they simply match themselves. You can concatenate ordinary characters,
so last matches the string 'last'. (In the rest of this section, we'll write RE’s in this special style,
usually without quotes, and strings to be matched 'in single quotes'.)

Some characters, like ' | ' or ' (', are special. Special characters either stand for classes of ordinary characters, or
affect how the regular expressions around them are interpreted.

Repetition qualifiers (*, +, ?, {m, n}, etc) cannot be directly nested. This avoids ambiguity with the non-greedy
modifier suffix ?, and with other modifiers in other implementations. To apply a second repetition to an inner
repetition, parentheses may be used. For example, the expression (?:a{6}) * matches any multiple of six 'a'
characters.

108 Chapter 6. Text Processing Services

https://github.com/python/cpython/tree/3.8/Lib/re.py
https://pypi.org/project/regex/

The Python Library Reference, Release 3.8.20

The special characters are:

. (Dot.) In the default mode, this matches any character except a newline. If the DOTALL flag has been specified,
this matches any character including a newline.

~ (Caret.) Matches the start of the string, and in MULTILINE mode also matches immediately after each newline.

$ Matches the end of the string or just before the newline at the end of the string, and in MULTILINE mode also
matches before a newline. foo matches both ‘foo” and “foobar’, while the regular expression foo$ matches
only ‘foo’. More interestingly, searching for foo. $in ' fool\nfoo2\n' matches f002’ normally, but fool’
in MULTILINE mode; searching for a single $ in ' foo\n"' will find two (empty) matches: one just before
the newline, and one at the end of the string.

* Causes the resulting RE to match 0 or more repetitions of the preceding RE, as many repetitions as are possible.
ab* will match ‘@, ‘ab’, or ‘@’ followed by any number of ‘b’s.

+ Causes the resulting RE to match 1 or more repetitions of the preceding RE. ab+ will match ‘@’ followed by any
non-zero number of ‘b’s; it will not match just ‘@’

? Causes the resulting RE to match 0 or 1 repetitions of the preceding RE. ab? will match either ‘@’ or ‘ab’.

2,4?,2? The '', '+',and ' ? ' qualifiers are all greedy; they match as much text as possible. Sometimes this
behaviour isn’t desired; if the RE <. * > is matched against ' <a> b <c>"', it will match the entire string, and
not just '<a>"'. Adding ? after the qualifier makes it perform the match in non-greedy or minimal fashion; as
Jfew characters as possible will be matched. Using the RE <. * 2> will match only '<a>"'.

{m} Specifies that exactly m copies of the previous RE should be matched; fewer matches cause the entire RE not
to match. For example, a{ 6 } will match exactly six 'a' characters, but not five.

{m,n} Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match as many
repetitions as possible. For example, a{3, 5} will match from 3 to 5 'a' characters. Omitting m specifies
a lower bound of zero, and omitting n specifies an infinite upper bound. As an example, a{4, }b will match
'aaaab' orathousand 'a' characters followedbya 'b ', butnot 'aaab'. The comma may not be omitted
or the modifier would be confused with the previously described form.

{m,n}? Causes the resulting RE to match from m to n repetitions of the preceding RE, attempting to match as few
repetitions as possible. This is the non-greedy version of the previous qualifier. For example, on the 6-character
string 'aaaaaa',a{3,5} willmatch 5 'a"' characters, while a{ 3, 5} ? will only match 3 characters.

\ Either escapes special characters (permitting you to match characters like '* ', ' ? ', and so forth), or signals a
special sequence; special sequences are discussed below.

If you’re not using a raw string to express the pattern, remember that Python also uses the backslash as an
escape sequence in string literals; if the escape sequence isn’t recognized by Python’s parser, the backslash and
subsequent character are included in the resulting string. However, if Python would recognize the resulting
sequence, the backslash should be repeated twice. This is complicated and hard to understand, so it’s highly
recommended that you use raw strings for all but the simplest expressions.

[1 Used to indicate a set of characters. In a set:
o Characters can be listed individually, e.g. [amk] will match 'a', 'm',or 'k'.

» Ranges of characters can be indicated by giving two characters and separating them bya ' - ', for example

[a—z] will match any lowercase ASCII letter, [0—-5] [0—-9] will match all the two-digits numbers from

00 to 59, and [0-9A-Fa-f] will match any hexadecimal digit. If - is escaped (e.g. [a\-z]) or if
it’s placed as the first or last character (e.g. [—a] or [a—]), it will match a literal ' —".

o Special characters lose their special meaning inside sets. For example, [(+*)] will match any of the
literal characters ' (', "+', "*',or ") '.

» Character classes such as \w or \ S (defined below) are also accepted inside a set, although the characters
they match depends on whether ASCTI T or LOCALE mode is in force.

o Characters that are not within a range can be matched by complementing the set. If the first character of
the setis '~ ', all the characters that are not in the set will be matched. For example, [~5] will match
any character except '5', and ["] will match any character except '~ '. ~ has no special meaning if
it’s not the first character in the set.

6.2. re — Regular expression operations 109

The Python Library Reference, Release 3.8.20

o To match a literal '] ' inside a set, precede it with a backslash, or place it at the beginning of the set.
For example, both [() [\]1{}] and [] () [{}] will both match a parenthesis.

» Support of nested sets and set operations as in Unicode Technical Standard #18 might be added in the
future. This would change the syntax, so to facilitate this change a FutureWarning will be raised in
ambiguous cases for the time being. That includes sets starting with a literal ' [' or containing literal
character sequences '——"', '&&', '~~",and ' | | '. To avoid a warning escape them with a backslash.

Changed in version 3.7: FutureWarning is raised if a character set contains constructs that will change
semantically in the future.

| A|B, where A and B can be arbitrary REs, creates a regular expression that will match either A or B. An arbitrary
number of REs can be separated by the ' | ' in this way. This can be used inside groups (see below) as well.
As the target string is scanned, REs separated by ' | ' are tried from left to right. When one pattern completely
matches, that branch is accepted. This means that once A matches, B will not be tested further, even if it would
produce a longer overall match. In other words, the ' | ' operator is never greedy. To match a literal ' | ', use
\ |, or enclose it inside a character class, asin [|].

(...) Matches whatever regular expression is inside the parentheses, and indicates the start and end of a group;
the contents of a group can be retrieved after a match has been performed, and can be matched later in the
string with the \number special sequence, described below. To match the literals ' (' or ') ', use \ (or
\\) , or enclose them inside a character class: [(1, [)].

(?...) This is an extension notation (a '?"' following a ' (' is not meaningful otherwise). The first character
after the ' ? ' determines what the meaning and further syntax of the construct is. Extensions usually do not
create anew group; (?P<name>. . .) isthe only exception to this rule. Following are the currently supported
extensions.

(?ailmsux) (One or more letters from the set 'a', 'i', 'L', 'm', 's"', '"u’', 'x"'.) The group matches
the empty string; the letters set the corresponding flags: re . A (ASCII-only matching), re. I (ignore case),
re. L (locale dependent), re. M (multi-line), re. S (dot matches all), re . U (Unicode matching), and re.
X (verbose), for the entire regular expression. (The flags are described in Module Contents.) This is useful
if you wish to include the flags as part of the regular expression, instead of passing a flag argument to the
re.compile () function. Flags should be used first in the expression string.

(?:...) Anon-capturing version of regular parentheses. Matches whatever regular expression is inside the paren-
theses, but the substring matched by the group cannot be retrieved after performing a match or referenced later
in the pattern.

(?ailmsux—-imsx:...) (Zero or more letters from theset 'a', 'i', 'L', 'm', 's"', 'u', 'x"', optionally
followed by ' —"' followed by one or more letters from the 'i', 'm', 's"', 'x'.) The letters set or remove
the corresponding flags: re. A (ASCII-only matching), re. T (ignore case), re . L (locale dependent), re . M
(multi-line), re. S (dot matches all), re .U (Unicode matching), and re. X (verbose), for the part of the
expression. (The flags are described in Module Contents.)

The letters 'a', 'L' and 'u' are mutually exclusive when used as inline flags, so they can’t be combined
or follow '-"'. Instead, when one of them appears in an inline group, it overrides the matching mode in
the enclosing group. In Unicode patterns (?a:...) switches to ASCII-only matching, and (?u:...)
switches to Unicode matching (default). In byte pattern (?L:...) switches to locale depending matching,
and (?a:...) switches to ASCII-only matching (default). This override is only in effect for the narrow
inline group, and the original matching mode is restored outside of the group.

New in version 3.6.
Changed in version 3.7: The letters 'a', 'L' and 'u"' also can be used in a group.

(?P<name>. . .) Similar to regular parentheses, but the substring matched by the group is accessible via the
symbolic group name name. Group names must be valid Python identifiers, and each group name must be
defined only once within a regular expression. A symbolic group is also a numbered group, just as if the group
were not named.

Named groups can be referenced in three contexts. If the patternis (?P<quote>['"]) .*? (?P=quote)
(i.e. matching a string quoted with either single or double quotes):

110 Chapter 6. Text Processing Services

https://unicode.org/reports/tr18/

The Python Library Reference, Release 3.8.20

Context of reference to group “quote” Ways to reference it
in the same pattern itself

e (?P=quote) (as shown)
e \1

when processing match object m
e m.group ('quote')

e m.end ('quote') (etc.)

in a string passed to the repl argument of re.

sub () e \g<quote>

e \g<1>
e \1

(?P=name) A backreference to a named group; it matches whatever text was matched by the earlier group named

name.
(?#...) A comment; the contents of the parentheses are simply ignored.
(?=...) Matchesif ... matches next, but doesn’t consume any of the string. This is called a lookahead assertion.

For example, Isaac (?=Asimov) will match 'Isaac ' only if it’s followed by 'Asimov"'.

(?!...) Matchesif ... doesn’t match next. This is a negative lookahead assertion. For example, Isaac (?!
Asimov) will match 'Isaac ' only if it’s not followed by 'Asimov'.

(?<=...) Matches if the current position in the string is preceded by a match for . . . that ends at the current
position. This is called a positive lookbehind assertion. (?<=abc) def will find amatchin 'abcdef ', since
the lookbehind will back up 3 characters and check if the contained pattern matches. The contained pattern
must only match strings of some fixed length, meaning that abc or a | b are allowed, but a* and a{3, 4}
are not. Note that patterns which start with positive lookbehind assertions will not match at the beginning of
the string being searched; you will most likely want to use the search () function rather than the match ()
function:

>>> import re

>>> m = re.search (' (?<=abc)def', 'abcdef')
>>> m.group (0)
'def'

This example looks for a word following a hyphen:

>>> m = re.search(r' (?<=-)\wt+', 'spam-egg')
>>> m.group (0)
leggl

Changed in version 3.5: Added support for group references of fixed length.

(?<!...) Matches if the current position in the string is not preceded by a match for This is called a negative
lookbehind assertion. Similar to positive lookbehind assertions, the contained pattern must only match strings
of some fixed length. Patterns which start with negative lookbehind assertions may match at the beginning of
the string being searched.

(? (id/name) yes—pattern|no-pattern) Will try to match with yes-pattern if the group with given
id or name exists, and with no-pattern if it doesn’t. no—pattern is optional and can be omitted. For
example, (<) 2 (\w+@\w+ (?:\.\w+)+) (? (1)>]$) isapoor email matching pattern, which will match
with '<user@host.com>" as well as 'user@host.com', but not with '<user@host.com' nor
'user@host.com>".

The special sequences consist of '\ ' and a character from the list below. If the ordinary character is not an ASCII
digit or an ASCII letter, then the resulting RE will match the second character. For example, \ $ matches the character
|l $ |l .

\number Matches the contents of the group of the same number. Groups are numbered starting from 1. For
example, (.+) \1matches 'the the'or'55 55',butnot'thethe' (note the space after the group).

6.2. re — Regular expression operations 111

The Python Library Reference, Release 3.8.20

This special sequence can only be used to match one of the first 99 groups. If the first digit of number is 0, or
number is 3 octal digits long, it will not be interpreted as a group match, but as the character with octal value
number. Inside the ' [' and '] ' of a character class, all numeric escapes are treated as characters.

\A Matches only at the start of the string.

\b Matches the empty string, but only at the beginning or end of a word. A word is defined as a sequence of
word characters. Note that formally, \b is defined as the boundary between a \w and a \W character (or vice
versa), or between \w and the beginning/end of the string. This means that r ' \bfoo\b' matches 'foo",
'foo."', ' (foo) "', 'bar foo baz'butnot 'foobar' or 'foo3"'.

By default Unicode alphanumerics are the ones used in Unicode patterns, but this can be changed by using
the ASCTT flag. Word boundaries are determined by the current locale if the LOCALFE flag is used. Inside a
character range, \b represents the backspace character, for compatibility with Python’s string literals.

\B Matches the empty string, but only when it is nor at the beginning or end of a word. This means that r ' py\B"'
matches 'python', 'py3', 'py2', butnot 'py"', 'py."',or 'py!'. \Bis just the opposite of \Db,
so word characters in Unicode patterns are Unicode alphanumerics or the underscore, although this can be
changed by using the ASCT T flag. Word boundaries are determined by the current locale if the LOCALE flag
is used.

\d

For Unicode (str) patterns: Matches any Unicode decimal digit (that is, any character in Unicode character
category [Nd]). This includes [0—-9], and also many other digit characters. If the ASCTIT flag is used
only [0-9] is matched.

For 8-bit (bytes) patterns: Matches any decimal digit; this is equivalent to [0-9].

\D Matches any character which is not a decimal digit. This is the opposite of \d. If the ASCIT flag is used this
becomes the equivalent of [~0-9].

\s

For Unicode (str) patterns: Matches Unicode whitespace characters (which includes [\t\n\r\f\v],
and also many other characters, for example the non-breaking spaces mandated by typography rules in
many languages). If the ASCIT flagis used, only [\t\n\r\f\v] is matched.

For 8-bit (bytes) patterns: Matches characters considered whitespace in the ASCII character set; this is
equivalentto [\t\n\r\f\v].

\S Matches any character which is not a whitespace character. This is the opposite of \ s. If the ASCI I flag is used
this becomes the equivalent of [~ \t\n\r\f\v].

\w

For Unicode (str) patterns: Matches Unicode word characters; this includes most characters that can be
part of a word in any language, as well as numbers and the underscore. If the ASCTI T flag is used, only
[a—zA-Z0-9_] is matched.

For 8-bit (bytes) patterns: Matches characters considered alphanumeric in the ASCII character set; this is
equivalent to [a—zA-20-9_]. If the LOCALFE flag is used, matches characters considered alphanu-
meric in the current locale and the underscore.

\W Matches any character which is not a word character. This is the opposite of \w. If the ASCIT flag is used
this becomes the equivalent of [*a-zA-20-9_]. If the LOCALE flag is used, matches characters which are
neither alphanumeric in the current locale nor the underscore.

\Z Matches only at the end of the string.

Most of the standard escapes supported by Python string literals are also accepted by the regular expression parser:

\a \b \f \n
\N \r \t \u
\U \v \x AR

112 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.8.20

(Note that \b is used to represent word boundaries, and means “backspace” only inside character classes.)

"\u', "\U',and ' \N' escape sequences are only recognized in Unicode patterns. In bytes patterns they are errors.
Unknown escapes of ASCII letters are reserved for future use and treated as errors.

Octal escapes are included in a limited form. If the first digit is a 0, or if there are three octal digits, it is considered
an octal escape. Otherwise, it is a group reference. As for string literals, octal escapes are always at most three digits
in length.

Changed in version 3.3: The '\u' and '\U"' escape sequences have been added.
Changed in version 3.6: Unknown escapes consisting of '\ ' and an ASCII letter now are errors.

Changed in version 3.8: The ' \N{name} ' escape sequence has been added. As in string literals, it expands to the
named Unicode character (e.g. ' \N{EM DASH}").

6.2.2 Module Contents

The module defines several functions, constants, and an exception. Some of the functions are simplified versions of
the full featured methods for compiled regular expressions. Most non-trivial applications always use the compiled
form.

Changed in version 3.6: Flag constants are now instances of RegexF1ag, which is a subclass of enum. IntFlag.

re.compile (pattern, flags=0)
Compile a regular expression pattern into a regular expression object, which can be used for matching using its
match (), search () and other methods, described below.

The expression’s behaviour can be modified by specifying a flags value. Values can be any of the following
variables, combined using bitwise OR (the | operator).

The sequence

prog = re.compile (pattern)
result = prog.match(string)

is equivalent to

result = re.match(pattern, string)

but using re. compile () and saving the resulting regular expression object for reuse is more efficient when
the expression will be used several times in a single program.

Note: The compiled versions of the most recent patterns passed to re. compile () and the module-level
matching functions are cached, so programs that use only a few regular expressions at a time needn’t worry
about compiling regular expressions.

re.A

re.ASCII
Make \w, \W, \b, \B, \d, \D, \'s and \ S perform ASCII-only matching instead of full Unicode matching.
This is only meaningful for Unicode patterns, and is ignored for byte patterns. Corresponds to the inline flag
(?a).

Note that for backward compatibility, the re . U flag still exists (as well as its synonym re . UNICODE and its
embedded counterpart (?u)), but these are redundant in Python 3 since matches are Unicode by default for
strings (and Unicode matching isn’t allowed for bytes).

re .DEBUG
Display debug information about compiled expression. No corresponding inline flag.

re.I

6.2. re — Regular expression operations 113

The Python Library Reference, Release 3.8.20

re .IGNORECASE

re.L

Perform case-insensitive matching; expressions like [A-Z] will also match lowercase letters. Full Unicode
matching (such as U matching 1) also works unless the re . ASCTI I flag is used to disable non-ASCII matches.
The current locale does not change the effect of this flag unless the re . LOCALE flag is also used. Corresponds
to the inline flag (?1).

Note that when the Unicode patterns [a—z] or [A-Z] are used in combination with the TGNORECASE flag,
they will match the 52 ASCII letters and 4 additional non-ASCII letters: T (U+0130, Latin capital letter [with
dot above), ‘1’ (U+0131, Latin small letter dotless 1), 1 (U+017F, Latin small letter long s) and ‘K’ (U+212A,
Kelvin sign). If the ASCIT flag is used, only letters ‘@’ to ‘2’ and ‘A’ to “Z’ are matched.

re.LOCALE

re.
.MULTILINE

re

re.
.DOTALL

re

re.
.VERBOSE

re

Make \w, \W, \b, \B and case-insensitive matching dependent on the current locale. This flag can be used
only with bytes patterns. The use of this flag is discouraged as the locale mechanism is very unreliable, it only
handles one “culture” at a time, and it only works with 8-bit locales. Unicode matching is already enabled by
default in Python 3 for Unicode (str) patterns, and it is able to handle different locales/languages. Corresponds
to the inline flag (?L) .

Changed in version 3.6: re. LOCALE can be used only with bytes patterns and is not compatible with re.
ASCII.

Changed in version 3.7: Compiled regular expression objects with the re. LOCALE flag no longer depend on
the locale at compile time. Only the locale at matching time affects the result of matching.

When specified, the pattern character ' ~ ' matches at the beginning of the string and at the beginning of each
line (immediately following each newline); and the pattern character ' $ ' matches at the end of the string and
at the end of each line (immediately preceding each newline). By default, ' ~ ' matches only at the beginning
of the string, and '$ ' only at the end of the string and immediately before the newline (if any) at the end of
the string. Corresponds to the inline flag (?m) .

Make the ' . ' special character match any character at all, including a newline; without this flag, ' . ' will
match anything except a newline. Corresponds to the inline flag (?s) .

This flag allows you to write regular expressions that look nicer and are more readable by allowing you to
visually separate logical sections of the pattern and add comments. Whitespace within the pattern is ignored,
except when in a character class, or when preceded by an unescaped backslash, or within tokens like * 2, (2 :
or (?P<...>. When a line contains a # that is not in a character class and is not preceded by an unescaped
backslash, all characters from the leftmost such # through the end of the line are ignored.

This means that the two following regular expression objects that match a decimal number are functionally
equal:

a = re.compile(r"""\d + # the integral part
\. # the decimal point
\d * # some fractional digits""", re.X)

b = re.compile (r"\d+\.\d*")

Corresponds to the inline flag (?x) .

re.search (pattern, string, flags=0)

Scan through string looking for the first location where the regular expression pattern produces a match, and
return a corresponding match object. Return None if no position in the string matches the pattern; note that
this is different from finding a zero-length match at some point in the string.

re .match (pattern, string, flags=0)

If zero or more characters at the beginning of string match the regular expression pattern, return a corresponding

114

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.8.20

match object. Return None if the string does not match the pattern; note that this is different from a zero-length
match.

Note that even in MULTILINE mode, re.match () will only match at the beginning of the string and not
at the beginning of each line.

If you want to locate a match anywhere in string, use search () instead (see also search() vs. match()).

re . fullmatch (pattern, string, flags=0)
If the whole string matches the regular expression pattern, return a corresponding match object. Return None
if the string does not match the pattern; note that this is different from a zero-length match.

New in version 3.4.

re.split (pattern, string, maxsplit=0, flags=0)
Split string by the occurrences of pattern. If capturing parentheses are used in pattern, then the text of all
groups in the pattern are also returned as part of the resulting list. If maxsplit is nonzero, at most maxsplit splits
occur, and the remainder of the string is returned as the final element of the list.

>>> re.split (r'\W+', 'Words, words, words.')
['"Words', 'words', 'words', '']

>>> re.split(r' (\W+)', 'Words, words, words.')
['Words', ', ', 'words', ', ', 'words', '.', '']

>>> re.split (r'\W+', 'Words, words, words.',6 1)
['"Words', 'words, words.']

>>> re.split('[a-f]+"', '0a3B9', flags=re.IGNORECASE)
[ro', 'z', '9']

If there are capturing groups in the separator and it matches at the start of the string, the result will start with
an empty string. The same holds for the end of the string:

>>> re.split(r' (\W+)', '...words, words...")
v, '...'", 'words', ', ', 'words', '...', '']

That way, separator components are always found at the same relative indices within the result list.

Empty matches for the pattern split the string only when not adjacent to a previous empty match.

>>> re.split(r'\b', 'Words, words, words.')
(v, 'words', ', ', 'words', ', ', 'words', '.']

>>> re.split(r'\wW*', '...words...")

['l’ l', 'W', 'O', 'r', ldl, lsl’ l', llJ

>>> re.split(r' (\W*)', '...words...")

['l, '---‘, l" ll, 'W', 'l, lol, l" 'r" l|’ 'd" ll, 'S', "“I, ||, l" ll}

Changed in version 3.1: Added the optional flags argument.
Changed in version 3.7: Added support of splitting on a pattern that could match an empty string.

re.findall (pattern, string, flags=0)
Return all non-overlapping matches of pattern in string, as a list of strings. The string is scanned left-to-right,
and matches are returned in the order found. If one or more groups are present in the pattern, return a list of
groups; this will be a list of tuples if the pattern has more than one group. Empty matches are included in the
result.

Changed in version 3.7: Non-empty matches can now start just after a previous empty match.

re.finditer (pattern, string, flags=0)
Return an iterator yielding match objects over all non-overlapping matches for the RE pattern in string. The
string is scanned left-to-right, and matches are returned in the order found. Empty matches are included in the
result.

Changed in version 3.7: Non-empty matches can now start just after a previous empty match.

re.sub (pattern, repl, string, count=0, flags=0)
Return the string obtained by replacing the leftmost non-overlapping occurrences of pattern in string by the

6.2. re — Regular expression operations 115

The Python Library Reference, Release 3.8.20

replacement repl. If the pattern isn’t found, string is returned unchanged. repl can be a string or a function; if
it is a string, any backslash escapes in it are processed. That is, \n is converted to a single newline character,
\r is converted to a carriage return, and so forth. Unknown escapes of ASCII letters are reserved for future
use and treated as errors. Other unknown escapes such as \ & are left alone. Backreferences, such as \ 6, are
replaced with the substring matched by group 6 in the pattern. For example:

>>> re.sub(r'def\s+([a—-zA-Z_][a—-zA-Z_ 0-9]1*)\s*\ (\s*\):"',
r'static PyObject*\npy_\1 (void) \n{"',

C. 'def myfunc():")

'static PyObject*\npy_myfunc (void) \n{'

If repl is a function, it is called for every non-overlapping occurrence of pattern. The function takes a single
match object argument, and returns the replacement string. For example:

>>> def dashrepl (matchobj) :

if matchobj.group(0) == '-': return ' '
. else: return '-'
>>> re.sub('-{1,2}', dashrepl, 'pro————-gram-files')

'pro-—gram files'
>>> re.sub(r'\sAND\s', ' & ', 'Baked Beans And Spam', flags=re.IGNORECASE)
'Baked Beans & Spam'

The pattern may be a string or a pattern object.

The optional argument count is the maximum number of pattern occurrences to be replaced; count must be
a non-negative integer. If omitted or zero, all occurrences will be replaced. Empty matches for the pattern
are replaced only when not adjacent to a previous empty match, so sub ('x*', '-', 'abxd') returns
"—a-b--d-'.

In string-type repl arguments, in addition to the character escapes and backreferences described above, \
g<name> will use the substring matched by the group named name, as defined by the (?P<name>...)
syntax. \g<number> uses the corresponding group number; \ g<2> is therefore equivalent to \ 2, but isn’t
ambiguous in a replacement such as \g<2>0. \20 would be interpreted as a reference to group 20, not a
reference to group 2 followed by the literal character ' 0 '. The backreference \ g<0> substitutes in the entire
substring matched by the RE.

Changed in version 3.1: Added the optional flags argument.

Changed in version 3.5: Unmatched groups are replaced with an empty string.

Changed in version 3.6: Unknown escapes in pattern consisting of '\ ' and an ASCII letter now are errors.
Changed in version 3.7: Unknown escapes in repl consisting of '\ ' and an ASCII letter now are errors.

Changed in version 3.7: Empty matches for the pattern are replaced when adjacent to a previous non-empty
match.

re . subn (pattern, repl, string, count=0, flags=0)
Perform the same operation as sub (), but return a tuple (new_string, number_of_subs_made).

Changed in version 3.1: Added the optional flags argument.
Changed in version 3.5: Unmatched groups are replaced with an empty string.

re.escape (pattern)
Escape special characters in pattern. This is useful if you want to match an arbitrary literal string that may
have regular expression metacharacters in it. For example:

>>> print (re.escape('http://www.python.org'))
http://www\.python\.org

>>> legal_chars = string.ascii_lowercase + string.digits + "!#$%&"*+—-." " [~:"
>>> print ('[]+' % re.escape(legal_chars))
[abcdefghijklmnopgrstuvwxyz0123456789 ! \#\S$2\& "\ *\+\=\.\"_"\[\~:1+

(continues on next page)

116 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.8.20

(continued from previous page)

>>> Operators - [I+Y, l7¥’ l*l, l/l, l**l]
>>> print ('|'.Jjoin (map (re.escape, sorted(operators, reverse=True))))

ZIN=INHINFNF [\ F

This function must not be used for the replacement string in sub () and subn (), only backslashes should be
escaped. For example:

>>> digits_re = r'\d+'

>>> sample = '/usr/sbin/sendmail - 0 errors, 12 warnings'

>>> print (re.sub(digits_re, digits_re.replace('\\', r'\\'"), sample))
/usr/sbin/sendmail - \d+ errors, \d+ warnings

Changed in version 3.3: The '_' character is no longer escaped.

Changed in version 3.7: Only characters that can have special meaning in a regular expression are escaped. As
aresult, L v, T v’ '%l, "o "7 v, v, |/v’ L l, v; v’ v<v, |:v’ '>l, v@ v7and nyn arenolongerescaped.

re.purge ()
Clear the regular expression cache.

exception re.error (msg, pattern=None, pos=None)
Exception raised when a string passed to one of the functions here is not a valid regular expression (for example,
it might contain unmatched parentheses) or when some other error occurs during compilation or matching. It
is never an error if a string contains no match for a pattern. The error instance has the following additional
attributes:

msg
The unformatted error message.

pattern
The regular expression pattern.

pos
The index in pattern where compilation failed (may be None).

lineno
The line corresponding to pos (may be None).

colno
The column corresponding to pos (may be None).

Changed in version 3.5: Added additional attributes.

6.2.3 Regular Expression Objects

Compiled regular expression objects support the following methods and attributes:

Pattern.search (string[, pos[, endpos]])
Scan through string looking for the first location where this regular expression produces a match, and return
a corresponding match object. Return None if no position in the string matches the pattern; note that this is
different from finding a zero-length match at some point in the string.

The optional second parameter pos gives an index in the string where the search is to start; it defaults to 0.
This is not completely equivalent to slicing the string; the ' ~ ' pattern character matches at the real beginning
of the string and at positions just after a newline, but not necessarily at the index where the search is to start.

The optional parameter endpos limits how far the string will be searched; it will be as if the string is endpos char-
acters long, so only the characters from posto endpos — 1 will be searched for a match. If endpos is less than
pos, no match will be found; otherwise, if rx is a compiled regular expression object, rx . search (string,
0, 50) isequivalentto rx.search (string[:50], O0).

6.2. re — Regular expression operations 117

The Python Library Reference, Release 3.8.20

>>> pattern = re.compile ("d")

>>> pattern.search ("dog") # Match at index 0

<re.Match object; span=(0, 1), match='d'>

>>> pattern.search("dog", 1) # No match; search doesn't include the "d"

Pattern.match (string[, pos[, endpos]])
If zero or more characters at the beginning of string match this regular expression, return a corresponding match
object. Return None if the string does not match the pattern; note that this is different from a zero-length match.

The optional pos and endpos parameters have the same meaning as for the search () method.

>>> pattern = re.compile("o")
>>> pattern.match ("dog") # No match as "o" is not at the start of "dog".
>>> pattern.match ("dog", 1) # Match as "o" is the 2nd character of "dog".

<re.Match object; span=(1, 2), match='o'>

If you want to locate a match anywhere in string, use search () instead (see also search() vs. match()).

Pattern.fullmatch (string[, pos[, endpos]])
If the whole string matches this regular expression, return a corresponding match object. Return None if the
string does not match the pattern; note that this is different from a zero-length match.

The optional pos and endpos parameters have the same meaning as for the search () method.

>>> pattern = re.compile("o[gh]")

>>> pattern.fullmatch ("dog") # No match as "o" is not at the start of "dog
>>> pattern.fullmatch("ogre") # No match as not the full string matches.
>>> pattern.fullmatch ("doggie", 1, 3) # Matches within given limits.
<re.Match object; span=(1, 3), match='og'>

New in version 3.4.

Pattern.split (string, maxsplit=0)
Identical to the spl1it () function, using the compiled pattern.

Pattern.findall (string[, pos[, endpos]])
Similar to the findall () function, using the compiled pattern, but also accepts optional pos and endpos
parameters that limit the search region like for search ().

Pattern.finditer (sm'ng[, pos[, endpos]])
Similar to the finditer () function, using the compiled pattern, but also accepts optional pos and endpos
parameters that limit the search region like for search ().

Pattern.sub (repl, string, count=0)
Identical to the sub () function, using the compiled pattern.

Pattern.subn (repl, string, count=0)
Identical to the subn () function, using the compiled pattern.

Pattern.flags
The regex matching flags. This is a combination of the flags given to compile (), any (?...) inline flags
in the pattern, and implicit flags such as UNICODE if the pattern is a Unicode string.

Pattern.groups
The number of capturing groups in the pattern.

Pattern.groupindex
A dictionary mapping any symbolic group names defined by (?P<id>) to group numbers. The dictionary is
empty if no symbolic groups were used in the pattern.

Pattern.pattern
The pattern string from which the pattern object was compiled.

Changed in version 3.7: Added supportof copy . copy () and copy . deepcopy (). Compiled regular expression
objects are considered atomic.

118 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.8.20

6.2.4 Match Objects

Match objects always have a boolean value of True. Since match () and search () return None when there is
no match, you can test whether there was a match with a simple i f statement:

match = re.search(pattern, string)
if match:
process (match)

Match objects support the following methods and attributes:

Match.expand (template)
Return the string obtained by doing backslash substitution on the template string template, as done by the
sub () method. Escapes such as \n are converted to the appropriate characters, and numeric backreferences
(\1, \2) and named backreferences (\g<1>, \g<name>) are replaced by the contents of the corresponding
group.
Changed in version 3.5: Unmatched groups are replaced with an empty string.

Match.group ([group],])

Returns one or more subgroups of the match. If there is a single argument, the result is a single string; if
there are multiple arguments, the result is a tuple with one item per argument. Without arguments, groupl
defaults to zero (the whole match is returned). If a groupN argument is zero, the corresponding return value
is the entire matching string; if it is in the inclusive range [1..99], it is the string matching the corresponding
parenthesized group. If a group number is negative or larger than the number of groups defined in the pattern,
an IndexError exception is raised. If a group is contained in a part of the pattern that did not match, the
corresponding result is None. If a group is contained in a part of the pattern that matched multiple times, the
last match is returned.

>>> m = re.match (r" (\w+) (\w+)", "Isaac Newton, physicist")
>>> m.group (0) # The entire match

'Isaac Newton'

>>> m.group (1) # The first parenthesized subgroup.
'Isaac’

>>> m.group (2) # The second parenthesized subgroup.
'Newton'

>>> m.group (1, 2) # Multiple arguments give us a tuple.

("Isaac', 'Newton')

If the regular expression uses the (?P<name>. . .) syntax, the groupN arguments may also be strings iden-
tifying groups by their group name. If a string argument is not used as a group name in the pattern, an
IndexError exception is raised.

A moderately complicated example:

>>> m = re.match (r" (?P<first_name>\w+) (?P<last_name>\w+)", "Malcolm Reynolds")
>>> m.group ('first_name')
'Malcolm’

>>> m.group ('last_name')
'Reynolds’

Named groups can also be referred to by their index:

>>> m.group (1)
'Malcolm'
>>> m.group (2)
'Reynolds’

If a group matches multiple times, only the last match is accessible:

>>> m = re.match(r" (..)+", "alb2c3") # Matches 3 times.
>>> m.group (1) # Returns only the last match.
IC3|

6.2. re — Regular expression operations 119

The Python Library Reference, Release 3.8.20

Match._ getitem__ (g)
This is identical to m. group (g) . This allows easier access to an individual group from a match:

>>> m re.match (r" (\w+) (\w+)", "Isaac Newton, physicist")
>>> m[0] # The entire match

'Isaac Newton'

>>> m[1] # The first parenthesized subgroup.

'Isaac’

>>> m[2] # The second parenthesized subgroup.
'Newton'

New in version 3.6.

Match.groups (default=None)

Return a tuple containing all the subgroups of the match, from 1 up to however many groups are in the pattern.
The default argument is used for groups that did not participate in the match; it defaults to None.

For example:

>>> m

re.match (r" (\d+)\. (\d+)", "24.1632")
>>> m.groups ()
('24', '1632")

If we make the decimal place and everything after it optional, not all groups might participate in the match.
These groups will default to None unless the default argument is given:

>>> m = re.match (r" (\d+)\.? (\d+) 2", "24™")

>>> m.groups () # Second group defaults to None.

('24', None)

>>> m.groups ('0") # Now, the second group defaults to '0'.
('24V, YOV)

Match.groupdict (default=None)

Return a dictionary containing all the named subgroups of the match, keyed by the subgroup name. The default
argument is used for groups that did not participate in the match; it defaults to None. For example:

>>> m re.match(r" (?P<first_name>\w+) (?P<last_name>\w+)", "Malcolm Reynolds")
>>> m.groupdict ()
{'first_name': 'Malcolm', 'last_name': 'Reynolds'}

Match.start ([group])
Match.end ([group])

Return the indices of the start and end of the substring matched by group; group defaults to zero (meaning the
whole matched substring). Return -1 if group exists but did not contribute to the match. For a match object m,

and a group g that did contribute to the match, the substring matched by group g (equivalent tom. group (g))
is

m.string[m.start (g) :m.end(g)]

Note that m.start (group) will equal m.end (group) if group matched a null string. For example,
afterm = re.search('b(c?)', 'cba'),m.start(0) isl,m.end(0) is2,m.start (1) and
m.end (1) are both 2, and m. start (2) raises an IndexError exception.

An example that will remove remove_this from email addresses:

>>> email = "tony@tiremove_thisger.net"
>>> m re.search ("remove_this", email)
>>> email[:m.start ()] + email[m.end() :]
'tony@tiger.net'

Match.span ([group])

For a match m, return the 2-tuple (m.start (group), m.end(group)). Note that if group did not
contribute to the match, thisis (-1, -1). group defaults to zero, the entire match.

120 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.8.20

Match.pos
The value of pos which was passed to the search () or match () method of a regex object. This is the index
into the string at which the RE engine started looking for a match.

Match.endpos
The value of endpos which was passed to the search () or match () method of a regex object. This is the
index into the string beyond which the RE engine will not go.

Match.lastindex
The integer index of the last matched capturing group, or None if no group was matched at all. For exam-
ple, the expressions (a)b, ((a) (b)), and ((ab)) willhave lastindex == 1 if applied to the string
'ab', while the expression (a) (b) will have lastindex == 2, if applied to the same string.

Match.lastgroup
The name of the last matched capturing group, or None if the group didn’t have a name, or if no group was
matched at all.

Match.re
The regular expression object whose match () or search () method produced this match instance.

Match.string
The string passed to match () or search ().

Changed in version 3.7: Added support of copy . copy () and copy.deepcopy (). Match objects are consid-
ered atomic.

6.2.5 Regular Expression Examples
Checking for a Pair

In this example, we'll use the following helper function to display match objects a little more gracefully:

def displaymatch (match) :
if match is None:
return None
return '<Match: , groups=¢r>" % (match.group(), match.groups())

Suppose you are writing a poker program where a player’s hand is represented as a 5-character string with each

character representing a card, “a” for ace, “k” for king, “q” for queen, “j” for jack, “t” for 10, and “2” through “9”
representing the card with that value.

To see if a given string is a valid hand, one could do the following:

>>> valid = re.compile(r""[a2-9tjgk] s

>>> displaymatch (valid.match ("aktbg")) # Valid.
"<Match: 'aktb5qg', groups=()>"

>>> displaymatch(valid.match ("aktbe")) # Invalid.
>>> displaymatch (valid.match("akt")) # Invalid.
>>> displaymatch (valid.match ("727ak")) # Valid.
"<Match: '727ak', groups=()>"

That last hand, " 727ak", contained a pair, or two of the same valued cards. To match this with a regular expression,
one could use backreferences as such:

>>> pair = re.compile(r".*(.).*\1")

>>> displaymatch (pair.match ("717ak")) # Pair of 7s.
"<Match: '717', groups=('T7',)>"

>>> displaymatch (pair.match ("718ak")) # No pairs.

>>> displaymatch (pair.match("354aa")) # Pair of aces.

"<Match: '354aa', groups=('a',)>"

To find out what card the pair consists of, one could use the group () method of the match object in the following
manner:

6.2. re — Regular expression operations 121

The Python Library Reference, Release 3.8.20

>>> pair = re.compile(r".*(.).*\1")

>>> pair.match("717ak") .group (1)

|7|

Error because re.match() returns None, which doesn't have a group() method:

>>> pair.match("718ak") .group (1)
Traceback (most recent call last):
File "<pyshell#23>", line 1, in <module>
re.match (r".*(.).*\1", "718ak") .group (1)
AttributeError: 'NoneType' object has no attribute 'group'

>>> pair.match("354aa") .group (1)

!

Simulating scanf()

Python does not currently have an equivalent to scanf (). Regular expressions are generally more powerful, though
also more verbose, than scanf () format strings. The table below offers some more-or-less equivalent mappings
between scanf () format tokens and regular expressions.

scanf () Token | Regular Expression

%C .

%5¢ .{5}

%d [—+]2\d+

%e, E, %L, g [—+12 (\d+ (\.\d*) 2 [\.\d+) ([eE] [-+]2\d+) ?
$i [-+12(0[xX] [\dA-Fa—f]+[0[0-7]1*|\d+)

%0 [-+]12[0-71+

%$s \S+

%u \d+

$x, $X [-+1?(0[xX])?[\dA-Fa-f]+

To extract the filename and numbers from a string like

’/usr/sbin/sendmail - 0 errors, 4 warnings

you would use a scanf () format like

%$s — %d errors, %d warnings ‘

The equivalent regular expression would be

’(\S+) - (\d+) errors, (\d+) warnings ‘

search() vs. match()

Python offers two different primitive operations based on regular expressions: re.match () checks for a match
only at the beginning of the string, while re. search () checks for a match anywhere in the string (this is what
Perl does by default).

For example:

>>> re.match("c", "abcdef™) # No match
>>> re.search("c", "abcdef") # Match
<re.Match object; span=(2, 3), match='c'>

Regular expressions beginning with ' ~' can be used with search () to restrict the match at the beginning of the
string:

122 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.8.20

>>> re.match("c", "abcdef™) # No match
>>> re.search(""c", "abcdef™) # No match
>>> re.search(""a", "abcdef") # Match

<re.Match object; span=(0, 1), match='a'>

Note however that in MULTILINE mode match () only matches at the beginning of the string, whereas using
search () with a regular expression beginning with ' ~ ' will match at the beginning of each line.

>>> re.match('X', 'A\nB\nX', re.MULTILINE) # No match
>>> re.search('”X', 'A\nB\nX', re.MULTILINE) # Match
<re.Match object; span=(4, 5), match='X'>

Making a Phonebook

split () splits a string into a list delimited by the passed pattern. The method is invaluable for converting textual
data into data structures that can be easily read and modified by Python as demonstrated in the following example
that creates a phonebook.

First, here is the input. Normally it may come from a file, here we are using triple-quoted string syntax

>>> text = """Ross McFluff: 834.345.1254 155 Elm Street

Ronald Heathmore: 892.345.3428 436 Finley Avenue
Frank Burger: 925.541.7625 662 South Dogwood Way

Heather Albrecht: 548.326.4584 919 Park Place"""

The entries are separated by one or more newlines. Now we convert the string into a list with each nonempty line
having its own entry:

>>> entries = re.split ("\n+", text)

>>> entries

['Ross McFluff: 834.345.1254 155 Elm Street',
'Ronald Heathmore: 892.345.3428 436 Finley Avenue',
'Frank Burger: 925.541.7625 662 South Dogwood Way',
'Heather Albrecht: 548.326.4584 919 Park Place']

Finally, split each entry into a list with first name, last name, telephone number, and address. We use the maxsplit
parameter of split () because the address has spaces, our splitting pattern, in it:

>>> [re.split(":? ", entry, 3) for entry in entries]
[['Ross', 'McFluff', '834.345.1254', '155 Elm Street'],
['Ronald', 'Heathmore', '892.345.3428', '436 Finley Avenue'],
['"Frank', 'Burger', '925.541.7625', '662 South Dogwood Way'],
['Heather', 'Albrecht', '548.326.4584"', '919 Park Place']]

The : ? pattern matches the colon after the last name, so that it does not occur in the result list. With amaxsplit
of 4, we could separate the house number from the street name:

>>> [re.split(":? ", entry, 4) for entry in entries]

[['"Ross', 'McFluff', '834.345.1254', '155', 'Elm Street'],
['"Ronald', 'Heathmore', '892.345.3428', '436', 'Finley Avenue'],
['"Frank', 'Burger', '925.541.7625', '662', 'South Dogwood Way'],
["Heather', 'Albrecht', '548.326.4584', '919', 'Park Place']]

6.2. re — Regular expression operations 123

The Python Library Reference, Release 3.8.20

Text Munging

sub () replaces every occurrence of a pattern with a string or the result of a function. This example demonstrates
using sub () with a function to “munge” text, or randomize the order of all the characters in each word of a sentence
except for the first and last characters:

>>> def repl (m):

inner_word = list (m.group(2))
random.shuffle (inner_word)
.. return m.group (1) + "".join (inner_word) + m.group (3)
>>> text = "Professor Abdolmalek, please report your absences promptly."

>>> re.sub (r" (\w) (\w+) (\w)", repl, text)
'Poefsrosr Aealmlobdk, pslaee reorpt your abnseces plmrptoy.'
>>> re.sub(r" (\w) (\w+) (\w)", repl, text)
'Pofsroser Aodlambelk, plasee reoprt yuor asnebces potlmrpy.'

Finding all Adverbs

findall () matches all occurrences of a pattern, not just the first one as search () does. For example, if a writer
wanted to find all of the adverbs in some text, they might use findall () in the following manner:

>>> text = "He was carefully disguised but captured quickly by police."
>>> re.findall (r"\w+ly", text)
['carefully', 'quickly']

Finding all Adverbs and their Positions

If one wants more information about all matches of a pattern than the matched text, finditer () is useful as it
provides match objects instead of strings. Continuing with the previous example, if a writer wanted to find all of the
adverbs and their positions in some text, they would use finditer () in the following manner:

>>> text = "He was carefully disguised but captured quickly by police."
>>> for m in re.finditer (r"\wt+ly", text):
print (' - : ' % (m.start (), m.end(), m.group(0)))

07-16: carefully
40-47: quickly

Raw String Notation

Raw string notation (r"text") keeps regular expressions sane. Without it, every backslash ('\ ') in a regular
expression would have to be prefixed with another one to escape it. For example, the two following lines of code are
functionally identical:

>>> re.match (r"\wW(.)\1\w", "™ £f£f ")

<re.Match object; span=(0, 4), match=' ff '>
>>> re.match ("\\W (.)\\I\\w", " ££ ™)
<re.Match object; span=(0, 4), match=' ff '>

When one wants to match a literal backslash, it must be escaped in the regular expression. With raw string nota-
tion, this means r" \\". Without raw string notation, one must use " \\\\ ", making the following lines of code
functionally identical:

>>> re.match (r"\\", r"\\")
<re.Match object; span=(0, 1), match="\\"'>
>>> re.match ("\\\\", r"\\")
<re.Match object; span=(0, 1), match="\\'>

124 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.8.20

Writing a Tokenizer
A tokenizer or scanner analyzes a string to categorize groups of characters. This is a useful first step in writing a
compiler or interpreter.

The text categories are specified with regular expressions. The technique is to combine those into a single master
regular expression and to loop over successive matches:

from typing import NamedTuple
import re

class Token (NamedTuple) :
type: str
value: str
line: int
column: int

def tokenize (code) :
keywords = {'IF', 'THEN', 'ENDIF', 'FOR', 'NEXT', 'GOSUB', 'RETURN'}
token_specification = [

('NUMBER', r'\d+ (\.\d*) ?' # Integer or decimal number
('ASSIGN', r':="), # Assignment operator
("END', r'; ", # Statement terminator
("ID"', r'[A-Za-z]+"), # Identifiers
('OoP"', r'[+\-*/1"), # Arithmetic operators
("NEWLINE', r'\n'"), # Line endings
('SKIP', r'[\tl+"), # Skip over spaces and tabs
('MISMATCH', r'."), # Any other character

]

tok_regex = '|'.joln (' (?P<%s5>%s)' % pair for pair in token_specification)

line_num = 1

line_start = 0

for mo in re.finditer (tok_regex, code):
kind = mo.lastgroup

value = mo.group ()
column = mo.start () - line_start
if kind == 'NUMBER':
value = float (value) if '.' in value else int (value)
elif kind == 'ID' and value in keywords:
kind = value
elif kind == 'NEWLINE':

line_start = mo.end()
line_num += 1

continue
elif kind == 'SKIP':
continue
elif kind == 'MISMATCH':
raise RuntimeError (f'{value!/r} unexpected on line {line_num}"')

yield Token (kind, value, line_num, column)

statements = "'’
IF gquantity THEN
total := total + price * quantity;
tax := price * 0.05;
ENDIF;

for token in tokenize (statements):
print (token)

The tokenizer produces the following output:

6.2. re — Regular expression operations 125

https://en.wikipedia.org/wiki/Lexical_analysis

The Python Library Reference, Release 3.8.20

Token (type="IF"', value='IF', line=2, column=4)

Token (type="'ID', value='quantity', line=2, column=7)
Token (type='THEN', wvalue='THEN', line=2, column=16)
Token (type="'ID', value='total', line=3, column=8)
Token (type="ASSIGN', wvalue=':=', line=3, column=14)
Token (type="'ID', value='total', line=3, column=17)
Token (type="'0OP', value='+', line=3, column=23)

Token (type="'ID', value='price', line=3, column=25)
Token (type='0OP', value='*', line=3, column=31)

Token (type="ID', value='quantity', line=3, column=33)
Token (type="END', value=';', line=3, column=41)
Token (type="ID', value='tax', line=4, column=38)
Token (type="ASSIGN', value=':=', line=4, column=12)
Token (type="'ID', value='price', line=4, column=15)
Token (type="'OP', value='*', line=4, column=21)

Token (type="'NUMBER', wvalue=0.05, line=4, column=23)
Token (type="END', value=';', line=4, column=27)
Token (type="ENDIF', wvalue='ENDIF', line=5, column=4)
Token (type="'END', value=';', line=5, column=9)

6.3 difflib — Helpers for computing deltas

Source code: Lib/difflib.py

This module provides classes and functions for comparing sequences. It can be used for example, for comparing files,
and can produce information about file differences in various formats, including HTML and context and unified diffs.
For comparing directories and files, see also, the 71 1ecmp module.

class difflib.SequenceMatcher

This is a flexible class for comparing pairs of sequences of any type, so long as the sequence elements are
hashable. The basic algorithm predates, and is a little fancier than, an algorithm published in the late 1980’s by
Ratcliff and Obershelp under the hyperbolic name “gestalt pattern matching.” The idea is to find the longest
contiguous matching subsequence that contains no “junk” elements; these “junk” elements are ones that are
uninteresting in some sense, such as blank lines or whitespace. (Handling junk is an extension to the Ratcliff
and Obershelp algorithm.) The same idea is then applied recursively to the pieces of the sequences to the left
and to the right of the matching subsequence. This does not yield minimal edit sequences, but does tend to
yield matches that “look right” to people.

Timing: The basic Ratcliff-Obershelp algorithm is cubic time in the worst case and quadratic time in the
expected case. SequenceMatcher is quadratic time for the worst case and has expected-case behavior
dependent in a complicated way on how many elements the sequences have in common; best case time is
linear.

Automatic junk heuristic: SequenceMatcher supports a heuristic that automatically treats certain se-
quence items as junk. The heuristic counts how many times each individual item appears in the sequence.
If an item’s duplicates (after the first one) account for more than 1% of the sequence and the sequence is
at least 200 items long, this item is marked as “popular” and is treated as junk for the purpose of sequence
matching. This heuristic can be turned off by setting the aut o junk argument to False when creating the
SequenceMatcher.

New in version 3.2: The autojunk parameter.

class difflib.Differ
This is a class for comparing sequences of lines of text, and producing human-readable differences or deltas.
Differ uses SequenceMat cher both to compare sequences of lines, and to compare sequences of characters
within similar (near-matching) lines.

Each line of a Di f fer delta begins with a two-letter code:

126 Chapter 6. Text Processing Services

https://github.com/python/cpython/tree/3.8/Lib/difflib.py

The Python Library Reference, Release 3.8.20

Code | Meaning
'— ' | line unique to sequence 1

'+ ' | line unique to sequence 2
v line common to both sequences
'? ' | line not present in either input sequence

Lines beginning with ‘2’ attempt to guide the eye to intraline differences, and were not present in either input
sequence. These lines can be confusing if the sequences contain tab characters.

class difflib.HtmlDiff
This class can be used to create an HTML table (or a complete HTML file containing the table) showing a
side by side, line by line comparison of text with inter-line and intra-line change highlights. The table can be
generated in either full or contextual difference mode.

The constructor for this class is:

__init__ (tabsize=8, wrapcolumn=None, linejunk=None, charjunk=IS_CHARACTER_JUNK)
Initializes instance of Html1Diff.

tabsize is an optional keyword argument to specify tab stop spacing and defaults to 8.

wrapcolumn is an optional keyword to specify column number where lines are broken and wrapped,
defaults to None where lines are not wrapped.

linejunk and charjunk are optional keyword arguments passed into ndiff () (used by Html1Diff to
generate the side by side HTML differences). See ndi £ () documentation for argument default values
and descriptions.

The following methods are public:

make_ file (fromlines, tolines, fromdesc=", todesc=", context=False, numlines=5, *, charset="utf-8’)
Compares fromlines and folines (lists of strings) and returns a string which is a complete HTML file
containing a table showing line by line differences with inter-line and intra-line changes highlighted.

fromdesc and todesc are optional keyword arguments to specify from/to file column header strings (both
default to an empty string).

context and numlines are both optional keyword arguments. Set context to True when contextual dif-
ferences are to be shown, else the default is False to show the full files. numlines defaults to 5. When
context is True numlines controls the number of context lines which surround the difference highlights.
When context is F a1l se numlines controls the number of lines which are shown before a difference high-
light when using the “next” hyperlinks (setting to zero would cause the “next” hyperlinks to place the next
difference highlight at the top of the browser without any leading context).

Note: fromdesc and todesc are interpreted as unescaped HTML and should be properly escaped while
receiving input from untrusted sources.

Changed in version 3.5: charset keyword-only argument was added. The default charset of HTML doc-
ument changed from 'ISO-8859-1"to 'utf-8".

make_table (fromlines, tolines, fromdesc=", todesc=", context=False, numlines=5)
Compares fromlines and tolines (lists of strings) and returns a string which is a complete HTML table
showing line by line differences with inter-line and intra-line changes highlighted.

The arguments for this method are the same as those for the make_file () method.

Tools/scripts/diff.py is a command-line front-end to this class and contains a good example of its
use.

difflib.context_diff (a, b, fromfile=", tofile=", fromfiledate=", tofiledate=", n=3, lineterm="\n")
Compare a and b (lists of strings); return a delta (a generator generating the delta lines) in context diff format.

Context diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in a before/after style. The number of context lines is set by n which defaults to three.

6.3. difflib — Helpers for computing deltas 127

The Python Library Reference, Release 3.8.20

By default, the diff control lines (those with * ** or ———) are created with a trailing newline. This is helpful
so that inputs created from io. TOBase.readlines () result in diffs that are suitable for use with io.
IOBase.writelines () since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set the lineferm argument to " " so that the output will be uniformly
newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these may
be specified using strings for fromfile, tofile, fromfiledate, and tofiledate. The modification times are normally
expressed in the ISO 8601 format. If not specified, the strings default to blanks.

>>> s1 = ['bacon\n', 'eggs\n', 'ham\n', 'guido\n']

>>> s2 = ['python\n', 'eggy\n', 'hamster\n', 'guido\n']

>>> sys.stdout.writelines (context_diff(sl, s2, fromfile='before.py', tofile=
—~'after.py'))

*** before.py

-—— after.py

*khkkhkkhkkhkkhkkhkkkhkkhkkkkxk
* Kk K 1,4 * Kk kK

! bacon

! eggs

! ham

! eggy
! hamster
guido

See A command-line interface to difflib for a more detailed example.

difflib.get_close_matches (word, possibilities, n=3, cutoff=0.6)

Return a list of the best “good enough” matches. word is a sequence for which close matches are desired
(typically a string), and possibilities is a list of sequences against which to match word (typically a list of
strings).

Optional argument n (default 3) is the maximum number of close matches to return; n must be greater than 0.

Optional argument cutoff (default 0. 6) is a float in the range [0, 1]. Possibilities that don’t score at least that
similar to word are ignored.

The best (no more than n) matches among the possibilities are returned in a list, sorted by similarity score,
most similar first.

>>> get_close_matches ('appel', ['ape', 'apple', 'peach', 'puppy'])
["apple', 'ape']

>>> import keyword

>>> get_close_matches ('wheel', keyword.kwlist)

['while']

>>> get_close_matches ('pineapple', keyword.kwlist)

[]

>>> get_close_matches ('accept', keyword.kwlist)

['except']

difflib.ndiff (a, b, linejunk=None, charjunk=IS_CHARACTER_JUNK)

Compare a and b (lists of strings); return a Di f fer-style delta (a generator generating the delta lines).
Optional keyword parameters linejunk and charjunk are filtering functions (or None):

linejunk: A function that accepts a single string argument, and returns true if the string is junk, or false if
not. The default is None. There is also a module-level function 7S LINE_JUNK (), which filters out
lines without visible characters, except for at most one pound character ('#') - however the underlying
SequenceMatcher class does a dynamic analysis of which lines are so frequent as to constitute noise,
and this usually works better than using this function.

128

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.8.20

charjunk: A function that accepts a character (a string of length 1), and returns if the character is junk, or
false if not. The default is module-level function 7S_CHARACTER_JUNK (), which filters out whitespace
characters (a blank or tab; it’s a bad idea to include newline in this!).

Tools/scripts/ndiff.py isa command-line front-end to this function.

>>> diff = ndiff ('one\ntwo\nthree\n'.splitlines (keepends=True),
.. 'ore\ntree\nemu\n'.splitlines (keepends=True))
>>> print (''.join(diff), end="")

- one

A

ore

N+ 0

two
- three

+ tree
+ emu

difflib.restore (sequence, which)
Return one of the two sequences that generated a delta.

Given a sequence produced by Differ.compare () or ndiff (), extract lines originating from file 1 or
2 (parameter which), stripping off line prefixes.

Example:

>>> diff = ndiff ('one\ntwo\nthree\n'.splitlines (keepends=True),
. 'ore\ntree\nemu\n'.splitlines (keepends=True))
>>> diff = list(diff) # materialize the generated delta into a 1list
>>> print (''.join (restore(diff, 1)), end="")

one

two

three

>>> print (''.join(restore(diff, 2)), end="")

ore

tree

emu

difflib.unified_diff (a, b, fromfile=", tofile=", fromfiledate=", tofiledate=", n=3, lineterm="\n’)
Compare a and b (lists of strings); return a delta (a generator generating the delta lines) in unified diff format.

Unified diffs are a compact way of showing just the lines that have changed plus a few lines of context. The
changes are shown in an inline style (instead of separate before/after blocks). The number of context lines is
set by n which defaults to three.

By default, the diff control lines (those with ———, +++, or @@) are created with a trailing newline. This is
helpful so that inputs created from i 0. TOBase. readlines () result in diffs that are suitable for use with
io.IOBase.writelines () since both the inputs and outputs have trailing newlines.

For inputs that do not have trailing newlines, set the lineferm argument to " " so that the output will be uniformly
newline free.

The context diff format normally has a header for filenames and modification times. Any or all of these may
be specified using strings for fromfile, tofile, fromfiledate, and tofiledate. The modification times are normally
expressed in the ISO 8601 format. If not specified, the strings default to blanks.

>>> s1 = ['bacon\n', 'eggs\n', 'ham\n', 'guido\n']
>>> s2 ['python\n', 'eggy\n', 'hamster\n', 'guido\n']

>>> sys.stdout.writelines (unified diff(sl, s2, fromfile='before.py', tofile=
—'after.py'))

—-—— before.py

+++ after.py

@@ -1,4 +1,4 @@

(continues on next page)

6.3. difflib — Helpers for computing deltas 129

The Python Library Reference, Release 3.8.20

(continued from previous page)

-bacon
-eggs
—ham
+python
+teggy
+hamster
guido

See A command-line interface to difflib for a more detailed example.

difflib.diff_bytes (dfunc, a, b, fromfile=b", tofile=b", fromfiledate=b", tofiledate=b", n=3,

lineterm=b’\n’)
Compare a and b (lists of bytes objects) using dfunc; yield a sequence of delta lines (also bytes) in the format

returned by dfunc. dfunc must be a callable, typically either unified diff () or context_diff ().

Allows you to compare data with unknown or inconsistent encoding. All inputs except n must be bytes objects,
not str. Works by losslessly converting all inputs (except n) to str, and calling dfunc (a, b, fromfile,
tofile, fromfiledate, tofiledate, n, lineterm). The outputof dfunc is then converted
back to bytes, so the delta lines that you receive have the same unknown/inconsistent encodings as a and b.

New in version 3.5.

difflib.IS_LINE_JUNK (line)
Return True for ignorable lines. The line /ine is ignorable if /ine is blank or contains a single ' # ', otherwise
it is not ignorable. Used as a default for parameter /inejunk in ndi £ () in older versions.

difflib.IS_CHARACTER_JUNK (ch)
Return True for ignorable characters. The character ch is ignorable if ch is a space or tab, otherwise it is not
ignorable. Used as a default for parameter charjunk in ndiff ().

See also:

Pattern Matching: The Gestalt Approach Discussion of a similar algorithm by John W. Ratcliff and D. E. Met-
zener. This was published in Dr. Dobb’s Journal in July, 1988.

6.3.1 SequenceMatcher Objects

The SequenceMat cher class has this constructor:

class difflib.SequenceMatcher (isjunk=None, a=", b=", autojunk=True)
Optional argument isjunk must be None (the default) or a one-argument function that takes a sequence element
and returns true if and only if the element is “junk” and should be ignored. Passing None for isjunk is equivalent
to passing lambda x: False;in other words, no elements are ignored. For example, pass:

lambda x: x in " \t"

if you're comparing lines as sequences of characters, and don’t want to synch up on blanks or hard tabs.

The optional arguments a and b are sequences to be compared; both default to empty strings. The elements of
both sequences must be hashable.

The optional argument autojunk can be used to disable the automatic junk heuristic.
New in version 3.2: The autojunk parameter.

SequenceMatcher objects get three data attributes: bjunk is the set of elements of b for which isjunk is True;
bpopular is the set of non-junk elements considered popular by the heuristic (if it is not disabled); b2; is a dict
mapping the remaining elements of b to a list of positions where they occur. All three are reset whenever b is
reset with set_seqgs () or set_seqg2 ().

New in version 3.2: The bjunk and bpopular attributes.

SequenceMat cher objects have the following methods:

130 Chapter 6. Text Processing Services

http://www.drdobbs.com/database/pattern-matching-the-gestalt-approach/184407970
http://www.drdobbs.com/

The Python Library Reference, Release 3.8.20

set_seqgs (a, b)
Set the two sequences to be compared.

SequenceMat cher computes and caches detailed information about the second sequence, so if you want to
compare one sequence against many sequences, use set_segZ () to set the commonly used sequence once
and call set_seqgl () repeatedly, once for each of the other sequences.

set_seql (a)
Set the first sequence to be compared. The second sequence to be compared is not changed.

set_seq2 (b)
Set the second sequence to be compared. The first sequence to be compared is not changed.

find_longest_match (alo, ahi, blo, bhi)
Find longest matching block in a[alo:ahi] and b[blo:bhi].

If isjunk was omitted or None, find longest_match () returns (i, Jj, k) such that
ali:i+k] is equal to b[j:j+k], where alo <= i <= i+k <= ahi and blo <= j <=
j+k <= bhi. Forall (i', j', k') meeting those conditions, the additional conditions k >=
k',i <= i',andif i == 1i', j <= j' are also met. In other words, of all maximal matching
blocks, return one that starts earliest in a, and of all those maximal matching blocks that start earliest in
a, return the one that starts earliest in b.

>>> s = SequenceMatcher (None, " abcd", "abcd abcd")
>>> s.find_longest_match(0, 5, 0, 9)
Match (a=0, b=4, size=5)

If isjunk was provided, first the longest matching block is determined as above, but with the additional
restriction that no junk element appears in the block. Then that block is extended as far as possible by
matching (only) junk elements on both sides. So the resulting block never matches on junk except as
identical junk happens to be adjacent to an interesting match.

Here’s the same example as before, but considering blanks to be junk. That prevents ' abcd' from
matching the ' abcd' at the tail end of the second sequence directly. Instead only the 'abcd' can
match, and matches the leftmost 'abcd' in the second sequence:

>>> 5 = SequenceMatcher (lambda x: x==" ", " abcd", "abcd abcd")
>>> s.find_longest_match(0, 5, 0, 9)
Match (a=1, b=0, size=4)

If no blocks match, this returns (alo, blo, 0).
This method returns a named tuple Match (a, b, size).

get_matching_blocks ()
Return list of triples describing non-overlapping matching subsequences. Each triple is of the form (1,
j, n),andmeansthata[i:i+n] == b[J:J+n]. The triples are monotonically increasing in i and
J.

The last triple is a dummy, and has the value (len(a), len(b), 0). Itis the only triple with n
== 0.If (1, j, n)and (i', J', n') are adjacent triples in the list, and the second is not the
last triple in the list, then i+n < i' or j+n < 7j';in other words, adjacent triples always describe
non-adjacent equal blocks.

>>> s = SequenceMatcher (None, "abxcd", "abcd")
>>> s.get_matching blocks ()
[Match (a=0, b=0, size=2), Match(a=3, b=2, size=2), Match(a=5, b=4, size=0)]

get_opcodes ()
Return list of 5-tuples describing how to turn a into b. Each tuple is of the form (tag, i1, i2,
31, j2).Thefirsttuplehas i1 == j1 == 0, and remaining tuples have i/ equal to the i2 from the
preceding tuple, and, likewise, jI equal to the previous j2.

The fag values are strings, with these meanings:

6.3. difflib — Helpers for computing deltas 131

The Python Library Reference, Release 3.8.20

Value Meaning

'replace' | a[i1:12] should be replaced by b[j1:32].

'delete' a[il:12] should be deleted. Note that 71 == 72 in this case.

'insert' b[j1:732] should be insertedat a[1i1:11]. Note that 11 == 12 in this case.
'equal' alil:12] == b[jl:j2] (the sub-sequences are equal).

For example:

>>> a = "gabxcd"
>>> b = "abycdf"
>>> s = SequenceMatcher (None, a, b)
>>> for tag, i1, i2, j1, j2 in s.get_opcodes|():
print (' al : 1 ——> Db :] -——> '.format (
. tag, 11, i2, 31, j2, alil:i2], b[jl:321))
delete af[0:1] ——> b[0:0] 'q' > !
equal al[l:3] ——> b[0:2] 'ab' ——> 'ab'
replace af3:4] -——> b[2:3] x> Ty
equal afd4:6] ——> b[3:5] 'ed' ——> 'cd!
insert a[6:6] ——> b[5:6] B

get_grouped_opcodes (n=3)
Return a generator of groups with up to n lines of context.

Starting with the groups returned by get_opcodes (), this method splits out smaller change clusters
and eliminates intervening ranges which have no changes.

The groups are returned in the same format as get_opcodes ().

ratio ()
Return a measure of the sequences’ similarity as a float in the range [0, 1].

Where T is the total number of elements in both sequences, and M is the number of matches, this is
2.0*M/T. Note that this is 1 . 0 if the sequences are identical, and 0 . 0 if they have nothing in common.

This is expensive to compute if get_matching blocks () or get_opcodes () hasn't already
been called, in which case you may want to try quick_ratio () or real_quick_ratio () first
to get an upper bound.

Note: Caution: The result of a ratio () call may depend on the order of the arguments. For instance:

>>> SequenceMatcher (None, 'tide', 'diet').ratio()
0.25

>>> SequenceMatcher (None, 'diet', 'tide').ratio()
0.5

quick_ratio ()
Return an upper bound on ratio () relatively quickly.

real_quick_ratio ()
Return an upper bound on ratio () very quickly.

The three methods that return the ratio of matching to total characters can give different results due to differing
levels of approximation, although quick_ratio () and real_quick_ratio () are always at least as large as
ratio():

>>> s = SequenceMatcher (None, "abcd", "bcde")
>>> s.ratio()

0.75

>>> s.quick_ratio()

0.75

(continues on next page)

132 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.8.20

(continued from previous page)

>>> s.real_qguick_ratio()
1.0

6.3.2 SequenceMatcher Examples

This example compares two strings, considering blanks to be “junk”:

>>> s = SequenceMatcher (lambda x: x == " ",
"private Thread currentThread;",
"private volatile Thread currentThread;")

ratio () returns a float in [0, 1], measuring the similarity of the sequences. As a rule of thumb, a ratio () value
over 0.6 means the sequences are close matches:

>>> print (round(s.ratio(), 3))
0.866

If you’re only interested in where the sequences match, get_matching_blocks () is handy:

>>> for block in s.get_matching blocks():
.. print ("al] and bl] match for elements" % block)
al0] and b[0] match for 8 elements
al[8] and b[17] match for 21 elements
[29] and b[38] match for 0 elements

o))

Note that the last tuple returned by get_matching _blocks () is always a dummy, (len(a), len(b),
0), and this is the only case in which the last tuple element (number of elements matched) is 0.

If you want to know how to change the first sequence into the second, use get_opcodes () :

>>> for opcode in s.get_opcodes() :

C. print (" al : 1 bl : 1" % opcode)
equal al[0:8] b[0:8]

insert a[8:8] b[8:17]

equal al[8:29] b[17:38]

See also:

e The get_close_matches () function in this module which shows how simple code building on
SequenceMat cher can be used to do useful work.

« Simple version control recipe for a small application built with SequenceMatcher.

6.3.3 Differ Objects

Note that Di f fer-generated deltas make no claim to be minimal diffs. To the contrary, minimal diffs are often
counter-intuitive, because they synch up anywhere possible, sometimes accidental matches 100 pages apart. Restrict-
ing synch points to contiguous matches preserves some notion of locality, at the occasional cost of producing a longer
diff.

The Di ffer class has this constructor:

class difflib.Differ (linejunk=None, charjunk=None)
Optional keyword parameters linejunk and charjunk are for filter functions (or None):

linejunk: A function that accepts a single string argument, and returns true if the string is junk. The default is
None, meaning that no line is considered junk.

charjunk: A function that accepts a single character argument (a string of length 1), and returns true if the
character is junk. The default is None, meaning that no character is considered junk.

6.3. difflib — Helpers for computing deltas 133

https://code.activestate.com/recipes/576729/

The Python Library Reference, Release 3.8.20

These junk-filtering functions speed up matching to find differences and do not cause any differing lines or
characters to be ignored. Read the description of the find longest_match () method’s isjunk parameter
for an explanation.

Differ objects are used (deltas generated) via a single method:

compare (a, b)
Compare two sequences of lines, and generate the delta (a sequence of lines).

Each sequence must contain individual single-line strings ending with newlines. Such sequences can
be obtained from the readlines () method of file-like objects. The delta generated also consists
of newline-terminated strings, ready to be printed as-is via the writelines () method of a file-like
object.

6.3.4 Differ Example

This example compares two texts. First we set up the texts, sequences of individual single-line strings ending with
newlines (such sequences can also be obtained from the readlines () method of file-like objects):

>>> textl = "'' 1. Beautiful is better than ugly.
2. Explicit is better than implicit.
3. Simple is better than complex.
4. Complex is better than complicated.

. """ .splitlines (keepends=True)

>>> len (textl)

4

>>> textl1[0][-1]

'\n'

>>> text2 = "''! 1. Beautiful is better than ugly.
3. Simple is better than complex.
4. Complicated is better than complex.
5. Flat is better than nested.

''"'".splitlines (keepends=True)

Next we instantiate a Differ object:

>>> d = Differ ()

Note that when instantiating a D1 fer object we may pass functions to filter out line and character “junk.” See the
Differ () constructor for details.

Finally, we compare the two:

>>> result = list (d.compare (textl, text2))

result is a list of strings, so let’s pretty-print it:

>>> from pprint import pprint

>>> pprint (result)

[’ 1. Beautiful is better than ugly.\n',

! 2. Explicit is better than implicit.\n',

'— 3. Simple is better than complex.\n',
3

'+ Simple is better than complex.\n',

' ++\n',

' - 4. Complex is better than complicated.\n',
V? Iy P /\\nY’

'+ 4. Complicated is better than complex.\n',
e e+ N “\n',

'+ 5. Flat is better than nested.\n']

As a single multi-line string it looks like this:

134 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.8.20

>>> import sys

>>> sys.stdout.writelines (result)

1. Beautiful is better than ugly.

2. Explicit is better than implicit.
3. Simple is better than complex.
3

+ Simple is better than complex.

? ++

- 4. Complex is better than complicated.
2 el A
+ 4. Complicated is better than complex.
? ++++ ~
+ 5. Flat is better than nested.

6.3.5 A command-line interface to difflib

This example shows how to use difflib to create a di f £-like utility. It is also contained in the Python source distri-

bution, as Tools/scripts/diff.py.

#!/usr/bin/env python3

""" Command line interface to difflib.py providing diffs in four formats:

* ndiff: lists every line and highlights interline changes.

* context: highlights clusters of changes in a before/after format.
* unified: highlights clusters of changes in an inline format.

* html: generates side by side comparison with change highlights.

mn

import sys, os, difflib, argparse
from datetime import datetime, timezone

def file_mtime (path):
t = datetime.fromtimestamp (os.stat (path) .st_mtime,
timezone.utc)
return t.astimezone () .isoformat ()

def main () :

parser = argparse.ArgumentParser ()
parser.add_argument ('-c', action='store true', default=False,
help='Produce a context format diff (default)
parser.add_argument ('-u', action='store_ true', default=False,
help='Produce a unified format diff')
parser.add_argument ('-m', action='store true', default=False,
help='Produce HTML side by side diff '
'(can use -c and -1 in conjunction)')
parser.add_argument ('-n', action='store true', default=False,
help='Produce a ndiff format diff')
parser.add_argument ('-1', '—--lines', type=int, default=3,
help='Set number of context lines (default 3)
parser.add_argument ('fromfile')
parser.add_argument ('tofile')
options = parser.parse_args()

n = options.lines
fromfile = options.fromfile
tofile = options.tofile

fromdate = file_mtime (fromfile)
todate = file_mtime (tofile)

")

")

(continues on next page)

6.3. difflib — Helpers for computing deltas

135

The Python Library Reference, Release 3.8.20

(continued from previous page)

with open(fromfile) as ff:
fromlines = ff.readlines()

with open(tofile) as tf:
tolines tf.readlines ()

if options.u:
diff = difflib.unified_diff (fromlines, tolines, fromfile, tofile, fromdate,
— todate, n=n)
elif options.n:
diff = difflib.ndiff (fromlines, tolines)
elif options.m:
diff = difflib.HtmlDiff () .make_file(fromlines,tolines, fromfile,tofile,
—context=options.c,numlines=n)
else:
diff = difflib.context_diff (fromlines, tolines, fromfile, tofile, fromdate,
— todate, n=n)

sys.stdout.writelines (diff)

if name == '_ main__ ':
main ()

6.4 textwrap — Text wrapping and filling

Source code: Lib/textwrap.py

The textwrap module provides some convenience functions, as well as TextWrapper, the class that does all
the work. If you’re just wrapping or filling one or two text strings, the convenience functions should be good enough;
otherwise, you should use an instance of TextWrapper for efficiency.

textwrap.wrap (fext, width=70, **kwargs)
Wraps the single paragraph in fext (a string) so every line is at most width characters long. Returns a list of
output lines, without final newlines.

Optional keyword arguments correspond to the instance attributes of TextWrapper, documented below.
width defaults to 70.

See the TextWrapper.wrap () method for additional details on how wrap () behaves.

textwrap.£ill (fext, width=70, **kwargs)

Wraps the single paragraph in fext, and returns a single string containing the wrapped paragraph. 111 () is
shorthand for

"\n".Jjoin (wrap (text, ...))

In particular, £i11 () accepts exactly the same keyword arguments as wrap ().

textwrap.shorten (text, width, **kwargs)
Collapse and truncate the given fext to fit in the given width.

First the whitespace in text is collapsed (all whitespace is replaced by single spaces). If the result fits in the
width, it is returned. Otherwise, enough words are dropped from the end so that the remaining words plus the
placeholder fit within width:

>>> textwrap.shorten("Hello world!", width=12)
'Hello world!'

>>> textwrap.shorten("Hello world!", width=11)
'Hello [...]"

(continues on next page)

136 Chapter 6. Text Processing Services

https://github.com/python/cpython/tree/3.8/Lib/textwrap.py

The Python Library Reference, Release 3.8.20

(continued from previous page)

>>> textwrap.shorten("Hello world", width=10, placeholder="...")
'Hello...'

Optional keyword arguments correspond to the instance attributes of TextWrapper, documented below.
Note that the whitespace is collapsed before the text is passed to the TextWrapper £il1 () function, so
changing the value of tabsize, expand _tabs, drop_whitespace, and replace_whitespace
will have no effect.

New in version 3.4.

textwrap.dedent (fext)
Remove any common leading whitespace from every line in fext.

This can be used to make triple-quoted strings line up with the left edge of the display, while still presenting
them in the source code in indented form.

Note that tabs and spaces are both treated as whitespace, but they are not equal: the lines " hello" and
"\thello" are considered to have no common leading whitespace.

Lines containing only whitespace are ignored in the input and normalized to a single newline character in the
output.

For example:

def test():
end first line with \ to avoid the empty line!
s = lvv\
hello
world
L B |
print (repr(s)) # prints ' hello\n world\n !
print (repr (dedent (s))) # prints 'hello\n world\n'

textwrap.indent (fext, prefix, predicate=None)
Add prefix to the beginning of selected lines in fexz.

Lines are separated by calling text .splitlines (True).
By default, prefix is added to all lines that do not consist solely of whitespace (including any line endings).

For example:

>>> s = 'hello\n\n \nworld'
>>> indent (s, ' ")
' hello\n\n \n world'

The optional predicate argument can be used to control which lines are indented. For example, it is easy to add
prefix to even empty and whitespace-only lines:

>>> print (indent (s, '+ ', lambda line: True))
+ hello

+
+
+ world

New in version 3.3.

wrap (), £i111 () and shorten () work by creating a TextWrapper instance and calling a single method on
it. That instance is not reused, so for applications that process many text strings using wrap () and/or £i11 (), it
may be more efficient to create your own TextWrapper object.

Text is preferably wrapped on whitespaces and right after the hyphens in hyphenated words; only then will long words
be broken if necessary, unless TextWrapper.break_long_words is set to false.

6.4. textwrap — Text wrapping and filling 137

The Python Library Reference, Release 3.8.20

class textwrap.TextWrapper (**kwargs)

The TextWrapper constructor accepts a number of optional keyword arguments. Each keyword argument
corresponds to an instance attribute, so for example

wrapper = TextWrapper (initial_indent="* ")

is the same as

wrapper = TextWrapper ()
wrapper.initial_ indent = "* "

You can re-use the same TextWrapper object many times, and you can change any of its options through
direct assignment to instance attributes between uses.

The TextWrapper instance attributes (and keyword arguments to the constructor) are as follows:

width
(default: 70) The maximum length of wrapped lines. As long as there are no individual words in the
input text longer than width, TextWrapper guarantees that no output line will be longer than width
characters.

expand_tabs
(default: True) If true, then all tab characters in text will be expanded to spaces using the
expandtabs () method of fext.

tabsize
(default: 8) If expand_tabs is true, then all tab characters in fext will be expanded to zero or more
spaces, depending on the current column and the given tab size.

New in version 3.3.

replace_whitespace
(default: True) If true, after tab expansion but before wrapping, the wrap () method will replace each
whitespace character with a single space. The whitespace characters replaced are as follows: tab, newline,
vertical tab, formfeed, and carriage return (' \t\n\v\£f\zr"').

Note: If expand tabs is false and replace_whitespace is true, each tab character will be
replaced by a single space, which is not the same as tab expansion.

Note: If replace whitespace is false, newlines may appear in the middle of a line and cause
strange output. For this reason, text should be split into paragraphs (using str.splitlines () or
similar) which are wrapped separately.

drop_whitespace
(default: True) If true, whitespace at the beginning and ending of every line (after wrapping but before
indenting) is dropped. Whitespace at the beginning of the paragraph, however, is not dropped if non-
whitespace follows it. If whitespace being dropped takes up an entire line, the whole line is dropped.

initial_indent
(default: ' ') String that will be prepended to the first line of wrapped output. Counts towards the length
of the first line. The empty string is not indented.

subsequent_indent
(default: ' ') String that will be prepended to all lines of wrapped output except the first. Counts towards
the length of each line except the first.

fix sentence_endings
(default: False)If true, TextWrapper attempts to detect sentence endings and ensure that sentences
are always separated by exactly two spaces. This is generally desired for text in a monospaced font.
However, the sentence detection algorithm is imperfect: it assumes that a sentence ending consists of a
lowercase letter followed by oneof ' . ', ' ! ', or ' ? ', possibly followed by oneof ' "' or " ' ", followed

138

Chapter 6. Text Processing Services

The Python Library Reference, Release 3.8.20

by a space. One problem with this is algorithm is that it is unable to detect the difference between “Dr.”
in

’[...] Dr. Frankenstein's monster [...]

and “Spot.” in

’[...] See Spot. See Spot run [...]

fix_sentence_endings is false by default.

Since the sentence detection algorithm relies on st ring. lowercase for the definition of “lowercase
letter”, and a convention of using two spaces after a period to separate sentences on the same line, it is
specific to English-language texts.

break_long words
(default: True) If true, then words longer than width will be broken in order to ensure that no lines
are longer than width. If it is false, long words will not be broken, and some lines may be longer than
width. (Long words will be put on a line by themselves, in order to minimize the amount by which
width is exceeded.)

break_on_hyphens
(default: True) If true, wrapping will occur preferably on whitespaces and right after hyphens in com-
pound words, as it is customary in English. If false, only whitespaces will be considered as potentially
good places for line breaks, but you need to set break_Ilong_words to false if you want truly inse-
cable words. Default behaviour in previous versions was to always allow breaking hyphenated words.

max_lines
(default: None) If not None, then the output will contain at most max_lines lines, with placeholder
appearing at the end of the output.

New in version 3.4.

placeholder
(default: " [...]") String that will appear at the end of the output text if it has been truncated.

New in version 3.4.
TextWrapper also provides some public methods, analogous to the module-level convenience functions:

wrap (fext)
Wraps the single paragraph in fext (a string) so every line is at most wi dt h characters long. All wrapping
options are taken from instance attributes of the TextWrapper instance. Returns a list of output lines,
without final newlines. If the wrapped output has no content, the returned list is empty.

£ill (text)
Wraps the single paragraph in fext, and returns a single string containing the wrapped paragraph.

6.5 unicodedata — Unicode Database

This module provides access to the Unicode Character Database (UCD) which defines character properties for all
Unicode characters. The data contained in this database is compiled from the UCD version 12.1.0.

The module uses the same names and symbols as defined by Unicode Standard Annex #44, “Unicode Character
Database”. It defines the following functions:

unicodedata.lookup (name)
Look up character by name. If a character with the given name is found, return the corresponding character.
If not found, KeyError is raised.

6.5. unicodedata — Unicode Database 139

http://www.unicode.org/Public/12.1.0/ucd
https://www.unicode.org/reports/tr44/
https://www.unicode.org/reports/tr44/

The Python Library Reference, Release 3.8.20

Changed in version 3.3: Support for name aliases' and named sequences’ has been added.

unicodedata.name (chr[, default])
Returns the name assigned to the character chr as a string. If no name is defined, default is returned, or, if not
given, ValueError is raised.

unicodedata.decimal (chr[, default])
Returns the decimal value assigned to the character chr as integer. If no such value is defined, default is
returned, or, if not given, ValueError is raised.

unicodedata.digit (chr[, default])
Returns the digit value assigned to the character chr as integer. If no such value is defined, default is returned,
or, if not given, ValueError is raised.

unicodedata.numeric (chr[, default])
Returns the numeric value assigned to the character chr as float. If no such value is defined, default is returned,
or, if not given, ValueError is raised.

unicodedata.category (chr)
Returns the general category assigned to the character chr as string.

unicodedata.bidirectional (chr)
Returns the bidirectional class assigned to the character chr as string. If no such value is defined, an empty
string is returned.

unicodedata.combining (chr)
Returns the canonical combining class assigned to the character chr as integer. Returns O if no combining class
is defined.

unicodedata.east_asian_width (chr)
Returns the east asian width assigned to the character chr as string.

unicodedata.mirrored (chr)
Returns the mirrored property assigned to the character chr as integer. Returns 1 if the character has been
identified as a “mirrored” character in bidirectional text, O otherwise.

unicodedata.decomposition (chr)
Returns the character decomposition mapping assigned to the character chr as string. An empty string is
returned in case no such mapping is defined.

unicodedata.normalize (form, unistr)
Return the normal form form for the Unicode string unistr. Valid values for form are ‘NFC’, ‘NFKC’, ‘NFD’,
and ‘NFKD’.

The Unicode standard defines various normalization forms of a Unicode string, based on the definition of
canonical equivalence and compatibility equivalence. In Unicode, several characters can be expressed in vari-
ous way. For example, the character U+00C7 (LATIN CAPITAL LETTER C WITH CEDILLA) can also be
expressed as the sequence U+0043 (LATIN CAPITAL LETTER C) U+0327 (COMBINING CEDILLA).

For each character, there are two normal forms: normal form C and normal form D. Normal form D (NFD) is
also known as canonical decomposition, and translates each character into its decomposed form. Normal form
C (NFC) first applies a canonical decomposition, then composes pre-combined characters again.

In addition to these two forms, there are two additional normal forms based on compatibility equivalence. In
Unicode, certain characters are supported which normally would be unified with other characters. For example,
U+2160 (ROMAN NUMERAL ONE) is really the same thing as U+0049 (LATIN CAPITAL LETTER I).
However, it is supported in Unicode for compatibility with existing character sets (e.g. gb2312).

The normal form KD (NFKD) will apply the compatibility decomposition, i.e. replace all compatibility char-
acters with their equivalents. The normal form KC (NFKC) first applies the compatibility decomposition,
followed by the canonical composition.

Even if two unicode strings are normalized and look the same to a human reader, if one has combining char-
acters and the other doesn’t, they may not compare equal.

! http://www.unicode.org/Public/12.1.0/ucd/NameAliases. txt
2 http://www.unicode.org/Public/12.1.0/ucd/NamedSequences. txt

140 Chapter 6. Text Processing Services

http://www.unicode.org/Public/12.1.0/ucd/NameAliases.txt
http://www.unicode.org/Public/12.1.0/ucd/NamedSequences.txt

The Python Library Reference, Release 3.8.20

unicodedata.is_normalized (form, unistr)
Return whether the Unicode string unistr is in the normal form form. Valid values for form are ‘NFC’, ‘NFKC’,
‘NFD’, and ‘NFKD’.

New in version 3.8.
In addition, the module exposes the following constant:

unicodedata.unidata_version
The version of the Unicode database used in this module.

unicodedata.ued_3_2_0
This is an object that has the same methods as the entire module, but uses the Unicode database version 3.2
instead, for applications that require this specific version of the Unicode database (such as IDNA).

Examples:

>>> import unicodedata

>>> unicodedata.lookup ('LEFT CURLY BRACKET')

l{l

>>> unicodedata.name('/")

'SOLIDUS'

>>> unicodedata.decimal ('9")

9

>>> unicodedata.decimal ('a')

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: not a decimal

>>> unicodedata.category('A') # 'L'etter, 'u'ppercase

lLu'

>>> unicodedata.bidirectional ('\u0660') # 'A'rabic, 'N'umber
IAN'

6.6 stringprep — Internet String Preparation

Source code: Lib/stringprep.py

When identifying things (such as host names) in the internet, it is often necessary to compare such identifications for
“equality”. Exactly how this comparison is executed may depend on the application domain, e.g. whether it should
be case-insensitive or not. It may be also necessary to restrict the possible identifications, to allow only identifications
consisting of “printable” characters.

RF'C 3454 defines a procedure for “preparing” Unicode strings in internet protocols. Before passing strings onto the
wire, they are processed with the preparation procedure, after which they have a certain normalized form. The RFC
defines a set of tables, which can be combined into profiles. Each profile must define which tables it uses, and what
other optional parts of the st ringprep procedure are part of the profile. One example of a st ringprep profile
is nameprep, which is used for internationalized domain names.

The module st ringprep only exposes the tables from RFC 3454. As these tables would be very large to represent
them as dictionaries or lists, the module uses the Unicode character database internally. The module source code
itself was generated using the mkstringprep . py utility.

As a result, these tables are exposed as functions, not as data structures. There are two kinds of tables in the RFC:
sets and mappings. For a set, st ringprep provides the “characteristic function”, i.e. a function that returns True
if the parameter is part of the set. For mappings, it provides the mapping function: given the key, it returns the
associated value. Below is a list of all functions available in the module.

stringprep.in_table_al (code)
Determine whether code is in tableA.1 (Unassigned code points in Unicode 3.2).

6.6. stringprep — Internet String Preparation 141

https://github.com/python/cpython/tree/3.8/Lib/stringprep.py
https://tools.ietf.org/html/rfc3454.html
https://tools.ietf.org/html/rfc3454.html

The Python Library Reference, Release 3.8.20

stringprep.in_table_bl (code)
Determine whether code is in tableB.1 (Commonly mapped to nothing).

stringprep.map_table_b2 (code)
Return the mapped value for code according to tableB.2 (Mapping for case-folding used with NFKC).

stringprep.map_table_b3 (code)
Return the mapped value for code according to tableB.3 (Mapping for case-folding used with no normalization).

stringprep.in_table_cl1 (code)
Determine whether code is in tableC.1.1 (ASCII space characters).

stringprep.in_table_cl2 (code)
Determine whether code is in tableC.1.2 (Non-ASCII space characters).

stringprep.in_table_cll_cl12 (code)
Determine whether code is in tableC.1 (Space characters, union of C.1.1 and C.1.2).

stringprep.in_table_c21 (code)
Determine whether code is in tableC.2.1 (ASCII control characters).

stringprep.in_table_c22 (code)
Determine whether code is in tableC.2.2 (Non-ASCII control characters).

stringprep.in_table_c21_c22 (code)
Determine whether code is in tableC.2 (Control characters, union of C.2.1 and C.2.2).

stringprep.in_table_c3 (code)
Determine whether code is in tableC.3 (Private use).

stringprep.in_table_c4 (code)
Determine whether code is in tableC.4 (Non-character code points).

stringprep.in_table_c5 (code)
Determine whether code is in tableC.5 (Surrogate codes).

stringprep.in_table_c6 (code)
Determine whether code is in tableC.6 (Inappropriate for plain text).

stringprep.in_table_c7 (code)
Determine whether code is in tableC.7 (Inappropriate for canonical representation).

stringprep.in_table_c8 (code)
Determine whether code is in tableC.8 (Change display properties or are deprecated).

stringprep.in_table_c9 (code)
Determine whether code is in tableC.9 (Tagging characters).

stringprep.in_table_d1 (code)
Determine whether code is in tableD.1 (Characters with bidirectional property “R” or “AL”).

stringprep.in_table_d2 (code)
Determine whether code is in tableD.2 (Characters with bidirectional property “L”).

6.7 readline — GNU readline interface

The readline module defines a number of functions to facilitate completion and reading/writing of history files
from the Python interpreter. This module can be used directly, or via the »1completer module, which supports
completion of Python identifiers at the interactive prompt. Settings made using this module affect the behaviour of
both the interpreter’s interactive prompt and the prompts offered by the built-in i nput () function.

Readline keybindings may be configured via an initialization file, typically . inputrc in your home directory. See
Readline Init File in the GNU Readline manual for information about the format and allowable constructs of that file,
and the capabilities of the Readline library in general.

142 Chapter 6. Text Processing Services

https://tiswww.cwru.edu/php/chet/readline/rluserman.html#SEC9

The Python Library Reference, Release 3.8.20

Note: The underlying Readline library API may be implemented by the 1 ibedit library instead of GNU readline.
On macOS the readline module detects which library is being used at run time.

The configuration file for 1ibedit is different from that of GNU readline. If you programmatically load configu-
ration strings you can check for the text “libedit” in readline.__doc___to differentiate between GNU readline
and libedit.

If you use editline/1ibedit readline emulation on macOS, the initialization file located in your home directory
is named .editrc. For example, the following content in ~/.editrc will turn ON vi keybindings and TAB
completion:

python:bind -v
python:bind "I rl_complete

6.7.1 Init file

The following functions relate to the init file and user configuration:

readline.parse_and_bind (string)
Execute the init line provided in the string argument. This calls r1_parse_and_bind () inthe underlying
library.

readline.read_init_file([ﬁlename])
Execute a readline initialization file. The default filename is the last filename used. This calls
rl_read_init_file () in the underlying library.

6.7.2 Line buffer

The following functions operate on the line buffer:

readline.get_line_buffer ()
Return the current contents of the line buffer (r1_1line_buf fer in the underlying library).

readline.insert_text (string)
Insert text into the line buffer at the cursor position. This calls r1_insert_text () in the underlying
library, but ignores the return value.

readline.redisplay ()
Change what’s displayed on the screen to reflect the current contents of the line buffer. This calls
rl_redisplay () in the underlying library.

6.7.3 History file

The following functions operate on a history file:

readline.read_history_ file([ﬁlename])
Load a readline history file, and append it to the history list. The default filename is ~/ . history. This calls
read_history () in the underlying library.

readline.write_history_ file([ﬁlename])
Save the history list to a readline history file, overwriting any existing file. The default filename is ~/ .
history. Thiscallswrite_history () in the underlying library.

readline.append_history_file (nelements[, ﬁlename])
Append the last nelements items of history to a file. The default filename is ~/.history. The file must
already exist. This calls append_history () in the underlying library. This function only exists if Python
was compiled for a version of the library that supports it.

New in version 3.5.

6.7. readline — GNU readline interface 143

The Python Library Reference, Release 3.8.20

readline.get_history_length()

readline.set_history_ length (length)
Set or return the desired number of lines to save in the history file. The write history file () function
uses this value to truncate the history file, by calling history_truncate_file () in the underlying
library. Negative values imply unlimited history file size.

6.7.4 History list

The following functions operate on a global history list:

readline.clear_history ()
Clear the current history. This calls clear_history () in the underlying library. The Python function
only exists if Python was compiled for a version of the library that supports it.

readline.get_current_history length()
Return the number of items currently in the history. (This is different from get_history_ length (),
which returns the maximum number of lines that will be written to a history file.)

readline.get_history_item (index)
Return the current contents of history item at index. The item index is one-based. This calls
history_get () in the underlying library.

readline.remove_history_item (pos)
Remove history item specified by its position from the history. The position is zero-based. This calls
remove_history () in the underlying library.

readline.replace_history_item (pos, line)
Replace history item specified by its position with line. The position is zero-based. This calls
replace_history_entry () in the underlying library.

readline.add_history (line)
Append line to the history buffer, as if it was the last line typed. This calls add_history () inthe underlying
library.

readline.set_auto_history (enabled)
Enable or disable automatic calls to add_history () when reading input via readline. The enabled ar-
gument should be a Boolean value that when true, enables auto history, and that when false, disables auto
history.

New in version 3.6.

CPython implementation detail: Auto history is enabled by default, and changes to this do not persist across
multiple sessions.

6.7.5 Startup hooks

readline.set_startup_hook ([function])
Set or remove the function invoked by the r1_startup_hook callback of the underlying library. If function
is specified, it will be used as the new hook function; if omitted or None, any function already installed is
removed. The hook is called with no arguments just before readline prints the first prompt.

readline.set_pre_input_hook ([function])
Set or remove the function invoked by the r1_pre_input_hook callback of the underlying library. If
function is specified, it will be used as the new hook function; if omitted or None, any function already
installed is removed. The hook is called with no arguments after the first prompt has been printed and just
before readline starts reading input characters. This function only exists if Python was compiled for a version
of the library that supports it.

144 Chapter 6. Text Processing Services

The Python Library Reference, Release 3.8.20

6.7.6 Completion

The following functions relate to implementing a custom word completion function. This is typically operated by the
Tab key, and can suggest and automatically complete a word being typed. By default, Readline is set up to be used
by r1completer to complete Python identifiers for the interactive interpreter. If the readline module is to be
used with a custom completer, a different set of word delimiters should be set.

readline.set_completer ([function])
Set or remove the completer function. If function is specified, it will be used as the new completer function;
if omitted or None, any completer function already installed is removed. The completer function is called as
function (text, state),forstatein 0, 1, 2, ..., until it returns a non-string value. It should return the
next possible completion starting with fext.

The installed completer function 1is invoked by the entry_func callback passed to
rl_completion_matches () in the underlying library. The fext string comes from the first pa-
rameter to the r1_attempted_completion_function callback of the underlying library.

readline.get_completer ()
Get the completer function, or None if no completer function has been set.

readline.get_completion_type ()
Get the type of completion being attempted. This returns the r1_completion_type variable in the un-
derlying library as an integer.

readline.get_begidx ()

readline.get_endidx ()
Get the beginning or ending index of the completion scope. These indexes are the start and end arguments
passed to the r1_attempted_completion_function callback of the underlying library.

readline.set_completer_delims (string)

readline.get_completer_delims ()
Set or get the word delimiters for completion. These determine the start of the word
to be considered for completion (the completion scope). These functions access the
rl_completer_word_break_characters variable in the underlying library.

readline.set_completion_display matches_hook ([function])
Set or remove the completion display function. If function is specified, it will be used as the new com-
pletion display function; if omitted or None, any completion display function already installed is re-
moved. This sets or clears the r1_completion_display_matches_hook callback in the underly-
ing library. The completion display function is called as function (substitution, [matches],
longest_match_length) once each time matches need to be displayed.

6.7.7 Example

The following example demonstrates how to use the readl ine module’s history reading and writing functions to
automatically load and save a history file named .python_history from the user’s home directory. The code
below would normally be executed automatically during interactive sessions from the user's PYTHONSTARTUP file.

import atexit
import os
import readline

histfile = os.path.join(os.path.expanduser("~"), ".python history")
try:
readline.read_history_file(histfile)
default history len is -1 (infinite), which may grow unruly
readline.set_history_length(1000)
except FileNotFoundError:
pass

atexit.register (readline.write_history_file, histfile)

6.7. readline — GNU readline interface 145

The Python Library Reference, Release 3.8.20

This code is actually automatically run when Python is run in interactive mode (see Readline configuration).

The following example achieves the same goal but supports concurrent interactive sessions, by only appending the
new history.

import atexit

import os

import readline

histfile = os.path.join(os.path.expanduser ("~"), ".python_history")

try:

readline.read_history_file(histfile)

h_len = readline.get_current_history_length()
except FileNotFoundError:

open (histfile, 'wb').close()

h_len = 0

def save (prev_h_len, histfile):
new_h_len = readline.get_current_history_length()
readline.set_history_length(1000)
readline.append_history_file(new_h_len - prev_h_len, histfile)
atexit.register(save, h_len, histfile)

The following example extends the code. InteractiveConsole class to support history save/restore.

import atexit
import code
import os
import readline

class HistoryConsole (code.InteractiveConsole):

def _ init_ (self, locals=None, filename="<console>",
histfile=os.path.expanduser ("~/.console-history")):
code.InteractiveConsole._ init_ (self, locals, filename)

self.init_history(histfile)

def init_history(self, histfile):
readline.parse_and_bind("tab: complete™)
if hasattr(readline, "read history_file"):
try:
readline.read_history_file(histfile)
except FileNotFoundError:
pass
atexit.register(self.save_history, histfile)

def save_history(self, histfile):
readline.set_history_length(1000)
readline.write_history_file(histfile)

6.8 rlcompleter — Completion function for GNU readline

Source code: Lib/rlcompleter.py

The r1completer module defines a completion function suitable for the readl i ne module by completing valid
Python identifiers and keywords.

When this module is imported on a Unix platform with the readline module available, an instance of the
Completer class is automatically created and its complete () method is set as the readline completer.

Example:

146 Chapter 6. Text Processing Services

https://github.com/python/cpython/tree/3.8/Lib/rlcompleter.py

The Python Library Reference, Release 3.8.20

>>> import rlcompleter

>>> import readline

>>> readline.parse_and_bind("tab: complete™)
>>> readline. <TAB PRESSED>

readline._ _doc_ readline.get_line_buffer(readline.read_init_file(
readline._ file_ readline.insert_text (readline.set_completer (
readline._ name_ readline.parse_and_bind(

>>> readline.

The ricompleter module is designed for use with Python’s interactive mode. Unless Python is run with the —S
option, the module is automatically imported and configured (see Readline configuration).

On platforms without readline, the Completer class defined by this module can still be used for custom pur-
poses.

6.8.1 Completer Objects

Completer objects have the following method:

Completer.complete (fext, state)
Return the stateth completion for text.

If called for fext that doesn’t include a period character (' . '), it will complete from names currently defined
in__main__, builtins and keywords (as defined by the ke yword module).

If called for a dotted name, it will try to evaluate anything without obvious side-effects (functions will not be
evaluated, but it can generate calls to __getattr__ ()) up to the last part, and find matches for the rest
via the dir () function. Any exception raised during the evaluation of the expression is caught, silenced and
None is returned.

6.8. rlcompleter — Completion function for GNU readline 147

The Python Library Reference, Release 3.8.20

148 Chapter 6. Text Processing Services

CHAPTER
SEVEN

BINARY DATA SERVICES

The modules described in this chapter provide some basic services operations for manipulation of binary data. Other
operations on binary data, specifically in relation to file formats and network protocols, are described in the relevant
sections.

Some libraries described under 7ext Processing Services also work with either ASCII-compatible binary formats (for
example, re) or all binary data (for example, di f£11ib).

In addition, see the documentation for Python’s built-in binary data types in Binary Sequence Types — bytes, bytearray,
memoryview.

7.1 struct — Interpret bytes as packed binary data

Source code: Lib/struct.py

This module performs conversions between Python values and C structs represented as Python byt es objects. This
can be used in handling binary data stored in files or from network connections, among other sources. It uses Format
Strings as compact descriptions of the layout of the C structs and the intended conversion to/from Python values.

Note: By default, the result of packing a given C struct includes pad bytes in order to maintain proper alignment
for the C types involved; similarly, alignment is taken into account when unpacking. This behavior is chosen so that
the bytes of a packed struct correspond exactly to the layout in memory of the corresponding C struct. To handle
platform-independent data formats or omit implicit pad bytes, use st andard size and alignment instead of native
size and alignment: see Byte Order, Size, and Alignment for details.

Several st ruct functions (and methods of St ruct) take a buffer argument. This refers to objects that implement
the bufferobjects and provide either a readable or read-writable buffer. The most common types used for that purpose
are bytes and bytearray, but many other types that can be viewed as an array of bytes implement the buffer
protocol, so that they can be read/filled without additional copying from a byt es object.

7.1.1 Functions and Exceptions

The module defines the following exception and functions:

exception struct.error
Exception raised on various occasions; argument is a string describing what is wrong.

struct .pack (format, vil, v2, ...)
Return a bytes object containing the values v/, v2, ... packed according to the format string format. The
arguments must match the values required by the format exactly.

struct .pack_into (format, buffer, offset, vi, v2, ...)
Pack the values v, v2, ... according to the format string format and write the packed bytes into the writable
buffer buffer starting at position offset. Note that offset is a required argument.

149

https://github.com/python/cpython/tree/3.8/Lib/struct.py

The Python Library Reference, Release 3.8.20

struct .unpack (format, buffer)
Unpack from the buffer buffer (presumably packed by pack (format, ...))according to the format string
format. The result is a tuple even if it contains exactly one item. The buffer’s size in bytes must match the size
required by the format, as reflected by calcsize ().

struct .unpack_from (format, buffer, offset=0)
Unpack from buffer starting at position offset, according to the format string format. The result is a tuple even
if it contains exactly one item. The buffer’s size in bytes, starting at position offset, must be at least the size
required by the format, as reflected by calcsize ().

struct.iter_unpack (format, buffer)
Iteratively unpack from the buffer buffer according to the format string format. This function returns an iterator
which will read equally-sized chunks from the buffer until all its contents have been consumed. The buffer’s
size in bytes must be a multiple of the size required by the format, as reflected by calcsize ().

Each iteration yields a tuple as specified by the format string.
New in version 3.4.

struct.calecsize (format)
Return the size of the struct (and hence of the bytes object produced by pack (format, ...)) corre-
sponding to the format string format.

7.1.2 Format Strings

Format strings are the mechanism used to specify the expected layout when packing and unpacking data. They are
built up from Format Characters, which specify the type of data being packed/unpacked. In addition, there are special
characters for controlling the Byte Order, Size, and Alignment.

Byte Order, Size, and Alignment
By default, C types are represented in the machine’s native format and byte order, and properly aligned by skipping
pad bytes if necessary (according to the rules used by the C compiler).

Alternatively, the first character of the format string can be used to indicate the byte order, size and alignment of the
packed data, according to the following table:

Character | Byte order Size Alignment
@ native native native

= native standard | none

< little-endian standard | none

> big-endian standard | none

! network (= big-endian) | standard | none

If the first character is not one of these, '@ "' is assumed.

Native byte order is big-endian or little-endian, depending on the host system. For example, Intel x86 and AMD64
(x86-64) are little-endian; Motorola 68000 and PowerPC G5 are big-endian; ARM and Intel Itanium feature switch-
able endianness (bi-endian). Use sys.byteorder to check the endianness of your system.

Native size and alignment are determined using the C compiler’s sizeof expression. This is always combined with
native byte order.

Standard size depends only on the format character; see the table in the Format Characters section.

Note the difference between '@' and '=": both use native byte order, but the size and alignment of the latter is
standardized.

The form ' ! ' represents the network byte order which is always big-endian as defined in IETF RFC 1700.

There is no way to indicate non-native byte order (force byte-swapping); use the appropriate choice of '<' or '>"'.

150 Chapter 7. Binary Data Services

https://tools.ietf.org/html/rfc1700

The Python Library Reference, Release 3.8.20

Notes:

(1) Padding is only automatically added between successive structure members. No padding is added at the be-
ginning or the end of the encoded struct.

(2) No padding is added when using non-native size and alignment, e.g. with ‘<’, >, ‘=", and ‘!.

(3) To align the end of a structure to the alignment requirement of a particular type, end the format with the code
for that type with a repeat count of zero. See Examples.

Format Characters

Format characters have the following meaning; the conversion between C and Python values should be obvious given
their types. The ‘Standard size’ column refers to the size of the packed value in bytes when using standard size; that
is, when the format string starts with one of '<', '>", ' I'* or '=". When using native size, the size of the packed
value is platform-dependent.

Format | C Type Python type Standard size | Notes
X pad byte no value

c char bytes of length 1 | 1

b signed char integer 1 (D), (2)
B unsigned char integer 1 2)
? _Bool bool 1 (1)
h short integer 2 2)
H unsigned short integer 2 2)
i int integer 4 2)
I unsigned int integer 4 2)
1 long integer 4 2)
L unsigned long integer 4 2)
q long long integer 8 2)
Q unsigned long long | integer 8 2)
n ssize_t integer 3)
N size_t integer 3)
e (6) float 2)
f float float 4 (@)
d double float 8 4)
S char[] bytes

P char[] bytes

P void * integer 5)

Changed in version 3.3: Added support for the 'n' and 'N' formats.
Changed in version 3.6: Added support for the 'e ' format.
Notes:

(1) The '? "' conversion code corresponds to the _Bool type defined by C99. If this type is not available, it is
simulated using a char. In standard mode, it is always represented by one byte.

(2) When attempting to pack a non-integer using any of the integer conversion codes, if the non-integer has a
__index__ () method then that method is called to convert the argument to an integer before packing.

Changed in version 3.2: Use of the ___index__ () method for non-integers is new in 3.2.

(3) The 'n' and 'N' conversion codes are only available for the native size (selected as the default or with the
'@" byte order character). For the standard size, you can use whichever of the other integer formats fits your
application.

(4) Forthe 'f£', 'd' and 'e' conversion codes, the packed representation uses the IEEE 754 binary32, binary64
or binary16 format (for '£', 'd"' or 'e' respectively), regardless of the floating-point format used by the
platform.

7.1. struct — Interpret bytes as packed binary data 151

The Python Library Reference, Release 3.8.20

(5) The 'P' format character is only available for the native byte ordering (selected as the default or with the '@’
byte order character). The byte order character '="' chooses to use little- or big-endian ordering based on the
host system. The struct module does not interpret this as native ordering, so the 'P ' format is not available.

(6) The IEEE 754 binary16 “half precision” type was introduced in the 2008 revision of the IEEE 754 standard. It
has a sign bit, a 5-bit exponent and 11-bit precision (with 10 bits explicitly stored), and can represent numbers
between approximately 6.1e-05 and 6.5e+04 at full precision. This type is not widely supported by C
compilers: on a typical machine, an unsigned short can be used for storage, but not for math operations. See
the Wikipedia page on the half-precision floating-point format for more information.

A format character may be preceded by an integral repeat count. For example, the format string ' 4h ' means exactly
the same as 'hhhh'.

Whitespace characters between formats are ignored; a count and its format must not contain whitespace though.

For the ' s ' format character, the count is interpreted as the length of the bytes, not a repeat count like for the other
format characters; for example, ' 10s ' means a single 10-byte string, while ' 10c ' means 10 characters. If a count
is not given, it defaults to 1. For packing, the string is truncated or padded with null bytes as appropriate to make
it fit. For unpacking, the resulting bytes object always has exactly the specified number of bytes. As a special case,
'0s ' means a single, empty string (while ' Oc' means O characters).

When packing a value x using one of the integer formats (‘b ', 'B', 'h', '"H', "i','I','1','L', 'q', 'Q"),
if x is outside the valid range for that format then st ruct . error is raised.

Changed in version 3.1: In 3.0, some of the integer formats wrapped out-of-range values and raised
DeprecationWarning instead of st ruct.error.

The 'p' format character encodes a “Pascal string”, meaning a short variable-length string stored in a fixed number
of bytes, given by the count. The first byte stored is the length of the string, or 255, whichever is smaller. The bytes
of the string follow. If the string passed in to pack () is too long (longer than the count minus 1), only the leading
count—1 bytes of the string are stored. If the string is shorter than count -1, it is padded with null bytes so that
exactly count bytes in all are used. Note that for unpack (), the 'p' format character consumes count bytes, but
that the string returned can never contain more than 255 bytes.

For the ' 2 ' format character, the return value is either True or False. When packing, the truth value of the
argument object is used. Either 0 or 1 in the native or standard bool representation will be packed, and any non-zero
value will be True when unpacking.

Examples

Note: All examples assume a native byte order, size, and alignment with a big-endian machine.

A basic example of packing/unpacking three integers:

>>> from struct import *

>>> pack('hhl', 1, 2, 3)
b'\x00\x01\x00\x02\x00\x00\x00\x03"

>>> unpack ('hhl', b'\x00\x01\x00\x02\x00\x00\x00\x03")
(1, 2, 3)

>>> calcsize('hhl")

8

Unpacked fields can be named by assigning them to variables or by wrapping the result in a named tuple:

>>> record = b'raymond \x32\x12\x08\x01\x08"
>>> name, serialnum, school, gradelevel = unpack('<10sHHb', record)

>>> from collections import namedtuple

>>> Student = namedtuple('Student', 'name serialnum school gradelevel')
>>> Student._make (unpack ('<10sHHb', record))
Student (name=b'raymond ', serialnum=4658, school=264, gradelevel=8)

152 Chapter 7. Binary Data Services

https://en.wikipedia.org/wiki/IEEE_floating_point#IEEE_754-2008
https://en.wikipedia.org/wiki/Half-precision_floating-point_format

The Python Library Reference, Release 3.8.20

The ordering of format characters may have an impact on size since the padding needed to satisfy alignment require-
ments is different:

>>> pack('ci', b'*', 0x12131415)
b'*\x00\x00\x00\x12\x13\x14\x15"
>>> pack('ic', 0x12131415, b'*")
b'\x12\x13\x14\x15*"'

>>> calcsize('ci'")

8

>>> calcsize('ic')

5

The following format '11h01 "' specifies two pad bytes at the end, assuming longs are aligned on 4-byte boundaries:

>>> pack ('11h01', 1, 2, 3)
b'\x00\x00\x00\x01\x00\x00\x00\x02\x00\x03\x00\x00"

This only works when native size and alignment are in effect; standard size and alignment does not enforce any
alignment.

See also:
Module array Packed binary storage of homogeneous data.

Module xdrl1ib Packing and unpacking of XDR data.

7.1.3 Classes

The st ruct module also defines the following type:

class struct.Struct (format)
Return a new Struct object which writes and reads binary data according to the format string format. Creating
a Struct object once and calling its methods is more efficient than calling the st ruct functions with the same
format since the format string only needs to be compiled once.

Note: The compiled versions of the most recent format strings passed to St ruct and the module-level
functions are cached, so programs that use only a few format strings needn’t worry about reusing a single
Struct instance.

Compiled Struct objects support the following methods and attributes:

pack (vi,v2,...)
Identical to the pack () function, using the compiled format. (len (result) will equal size.)

pack_into (buffer, offset, vi, v2, ...)
Identical to the pack_into () function, using the compiled format.

unpack (buffer)
Identical to the unpack () function, using the compiled format. The buffer’s size in bytes must equal
size.

unpack_£from (buffer, offset=0)
Identical to the unpack_from/() function, using the compiled format. The buffer’s size in bytes,
starting at position offset, must be at least size.

iter_unpack (buffer)
Identical to the i ter_unpack () function, using the compiled format. The buffer’s size in bytes must
be a multiple of size.

New in version 3.4.

format
The format string used to construct this Struct object.

7.1. struct — Interpret bytes as packed binary data 153

The Python Library Reference, Release 3.8.20

Changed in version 3.7: The format string type is now st r instead of bytes.

size
The calculated size of the struct (and hence of the bytes object produced by the pack () method) cor-
responding to format.

7.2 codecs — Codec registry and base classes

Source code: Lib/codecs.py

This module defines base classes for standard Python codecs (encoders and decoders) and provides access to the
internal Python codec registry, which manages the codec and error handling lookup process. Most standard codecs
are text encodings, which encode text to bytes, but there are also codecs provided that encode text to text, and bytes
to bytes. Custom codecs may encode and decode between arbitrary types, but some module features are restricted
to use specifically with zext encodings, or with codecs that encode to bytes.

The module defines the following functions for encoding and decoding with any codec:

codecs . encode (0bj, encoding="utf-8’, errors='strict’)
Encodes obj using the codec registered for encoding.

Errors may be given to set the desired error handling scheme. The default error handler is
'strict' meaning that encoding errors raise ValueError (or a more codec specific subclass, such as
UnicodeEncodeError). Refer to Codec Base Classes for more information on codec error handling.

codecs .decode (obj, encoding=utf-8’, errors='strict’)
Decodes obj using the codec registered for encoding.

Errors may be given to set the desired error handling scheme. The default error handler is
'strict' meaning that decoding errors raise ValueError (or a more codec specific subclass, such as
UnicodeDecodeError). Refer to Codec Base Classes for more information on codec error handling.

The full details for each codec can also be looked up directly:

codecs . lookup (encoding)
Looks up the codec info in the Python codec registry and returns a CodecInfo object as defined below.

Encodings are first looked up in the registry’s cache. If not found, the list of registered search functions is
scanned. If no CodecInfoobjectisfound, a LookupError israised. Otherwise, the CodecInfo object
is stored in the cache and returned to the caller.

class codecs.CodecInfo (encode, decode, streamreader=None, streamwriter=None, incrementalen-

coder=None, incrementaldecoder=None, name=None)
Codec details when looking up the codec registry. The constructor arguments are stored in attributes of the

same name:

name
The name of the encoding.

encode

decode
The stateless encoding and decoding functions. These must be functions or methods which have the
same interface as the encode () and decode () methods of Codec instances (see Codec Interface).
The functions or methods are expected to work in a stateless mode.

incrementalencoder

incrementaldecoder
Incremental encoder and decoder classes or factory functions. These have to provide the interface defined
by the base classes TncrementalEncoder and IncrementalDecoder, respectively. Incremen-
tal codecs can maintain state.

streamwriter

154 Chapter 7. Binary Data Services

https://github.com/python/cpython/tree/3.8/Lib/codecs.py

The Python Library Reference, Release 3.8.20

streamreader
Stream writer and reader classes or factory functions. These have to provide the interface defined by the
base classes St reamiriter and St reamReader, respectively. Stream codecs can maintain state.

To simplify access to the various codec components, the module provides these additional functions which use
lookup () for the codec lookup:

codecs .getencoder (encoding)
Look up the codec for the given encoding and return its encoder function.

Raises a LookupError in case the encoding cannot be found.

codecs .getdecoder (encoding)
Look up the codec for the given encoding and return its decoder function.

Raises a LookupError in case the encoding cannot be found.

codecs.getincrementalencoder (encoding)
Look up the codec for the given encoding and return its incremental encoder class or factory function.

Raises a LookupError in case the encoding cannot be found or the codec doesn’t support an incremental
encoder.

codecs.getincrementaldecoder (encoding)
Look up the codec for the given encoding and return its incremental decoder class or factory function.

Raises a LookupError in case the encoding cannot be found or the codec doesn’t support an incremental
decoder.

codecs.getreader (encoding)
Look up the codec for the given encoding and return its St reamReader class or factory function.

Raises a LookupError in case the encoding cannot be found.

codecs.getwriter (encoding)
Look up the codec for the given encoding and return its St reamiriter class or factory function.

Raises a LookupError in case the encoding cannot be found.
Custom codecs are made available by registering a suitable codec search function:

codecs.register (search_function)
Register a codec search function. Search functions are expected to take one argument, being the encoding
name in all lower case letters, and return a CodecInfo object. In case a search function cannot find a given
encoding, it should return None.

Note: Search function registration is not currently reversible, which may cause problems in some cases, such
as unit testing or module reloading.

While the builtin open () and the associated i o module are the recommended approach for working with encoded
text files, this module provides additional utility functions and classes that allow the use of a wider range of codecs
when working with binary files:

codecs . open (filename, mode=r’, encoding=None, errors="strict’, buffering=-1)
Open an encoded file using the given mode and return an instance of St reamReaderWriter, providing
transparent encoding/decoding. The default file mode is ' r ', meaning to open the file in read mode.

Note: Underlying encoded files are always opened in binary mode. No automatic conversion of '\n"' is
done on reading and writing. The mode argument may be any binary mode acceptable to the built-in open ()
function; the 'b' is automatically added.

encoding specifies the encoding which is to be used for the file. Any encoding that encodes to and decodes
from bytes is allowed, and the data types supported by the file methods depend on the codec used.

7.2. codecs — Codec registry and base classes 155

The Python Library Reference, Release 3.8.20

errors may be given to define the error handling. It defaults to ' strict ' which causes a ValueError to
be raised in case an encoding error occurs.

buffering has the same meaning as for the built-in open () function. It defaults to -1 which means that the
default buffer size will be used.

codecs .EncodedFile (file, data_encoding, file_encoding=None, errors='strict’)
Return a St reamRecoder instance, a wrapped version of file which provides transparent transcoding. The
original file is closed when the wrapped version is closed.

Data written to the wrapped file is decoded according to the given data_encoding and then written to the original
file as bytes using file_encoding. Bytes read from the original file are decoded according to file_encoding, and
the result is encoded using data_encoding.

If file_encoding is not given, it defaults to data_encoding.

errors may be given to define the error handling. It defaults to 'strict ', which causes ValueError to
be raised in case an encoding error occurs.

codecs.iterencode (iterator, encoding, errors=strict’, **kwargs)
Uses an incremental encoder to iteratively encode the input provided by iterator. This function is a generator.
The errors argument (as well as any other keyword argument) is passed through to the incremental encoder.

This function requires that the codec accept text st r objects to encode. Therefore it does not support bytes-
to-bytes encoders such as base64_codec.

codecs.iterdecode (iterator, encoding, errors=strict’, **kwargs)
Uses an incremental decoder to iteratively decode the input provided by iterator. This function is a generator.
The errors argument (as well as any other keyword argument) is passed through to the incremental decoder.

This function requires that the codec accept byt es objects to decode. Therefore it does not support text-to-
text encoders such as rot_ 13, although rot_ 13 may be used equivalently with i terencode ().

The module also provides the following constants which are useful for reading and writing to platform dependent
files:

codecs .BOM

codecs .BOM_BE

codecs .BOM_LE

codecs .BOM_UTF8

codecs .BOM_UTF16

codecs.BOM_UTF16_BE

codecs.BOM_UTFl16_LE

codecs .BOM_UTF32

codecs.BOM_UTF32_BE

codecs.BOM_UTF32_LE
These constants define various byte sequences, being Unicode byte order marks (BOMs) for several encod-
ings. They are used in UTF-16 and UTF-32 data streams to indicate the byte order used, and in UTF-§ as
a Unicode signature. BOM_UTE16 is either BOM_UTF16_BE or BOM_UTF16_LE depending on the plat-
form’s native byte order, BOM is an alias for BOM_UTF16, BOM_LE for BOM_UTF16_LE and BOM_BE for
BOM_UTF16_BE. The others represent the BOM in UTF-8 and UTF-32 encodings.

7.2.1 Codec Base Classes

The codecs module defines a set of base classes which define the interfaces for working with codec objects, and
can also be used as the basis for custom codec implementations.

Each codec has to define four interfaces to make it usable as codec in Python: stateless encoder, stateless decoder,
stream reader and stream writer. The stream reader and writers typically reuse the stateless encoder/decoder to
implement the file protocols. Codec authors also need to define how the codec will handle encoding and decoding
errors.

156 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.8.20

Error Handlers

To simplify and standardize error handling, codecs may implement different error handling schemes by accepting the
errors string argument. The following string values are defined and implemented by all standard Python codecs:

Value Meaning

'strict' | Raise UnicodeError (or asubclass); this is the default. Implemented in
strict_errors ().

'ignore' | Ignore the malformed data and continue without further notice. Implemented in
ignore_errors ().

The following error handlers are only applicable to fext encodings:

Value Meaning

'replacel Replace with a suitable replacement marker; Python will use the official U+FFFD REPLACE-
MENT CHARACTER for the built-in codecs on decoding, and ‘? on encoding. Implemented in
replace_errors ().

'xmlcharr&eplpd avith'the appropriate XML character reference (only for encoding). Implemented in
xmlcharrefreplace_errors ().

'backslasRepltace ' with backslashed escape sequences. Implemented in
backslashreplace_errors().
'namerepl Replace with \N{...} escape sequences (only for encoding). Implemented in

namereplace_errors ().

' surrogat &isdeepding, replace byte with individual surrogate code ranging from U+DC80 to U+DCFF. This
code will then be turned back into the same byte when the ' surrogateescape' error handler
is used when encoding the data. (See PEP 383 for more.)

In addition, the following error handler is specific to the given codecs:

Value Codecs Meaning
'surrogatjeptdiBs utf-16, utf-32, utf-16-be, | Allow encoding and decoding of surrogate codes. These
utf-16-le, utf-32-be, utf-32-le codecs normally treat the presence of surrogates as an error.

New in version 3.1: The ' surrogateescape' and 'surrogatepass' error handlers.

Changed in version 3.4: The ' surrogatepass' error handlers now works with utf-16* and utf-32* codecs.
New in version 3.5: The 'namereplace' error handler.

Changed in version 3.5: The 'backslashreplace’ error handlers now works with decoding and translating.
The set of allowed values can be extended by registering a new named error handler:

codecs.register_error (name, error_handler)
Register the error handling function error_handler under the name name. The error_handler argument will be
called during encoding and decoding in case of an error, when name is specified as the errors parameter.

For encoding, error_handler will be called with a UnicodeEncodeError instance, which contains infor-
mation about the location of the error. The error handler must either raise this or a different exception, or
return a tuple with a replacement for the unencodable part of the input and a position where encoding should
continue. The replacement may be either st r or bytes. If the replacement is bytes, the encoder will simply
copy them into the output buffer. If the replacement is a string, the encoder will encode the replacement. En-
coding continues on original input at the specified position. Negative position values will be treated as being
relative to the end of the input string. If the resulting position is out of bound an TndexError will be raised.

Decoding and translating works similarly, except UnicodeDecodeError or
UnicodeTranslateError will be passed to the handler and that the replacement from the error
handler will be put into the output directly.

Previously registered error handlers (including the standard error handlers) can be looked up by name:

7.2. codecs — Codec registry and base classes 157

https://www.python.org/dev/peps/pep-0383

The Python Library Reference, Release 3.8.20

codecs.lookup_error (name)
Return the error handler previously registered under the name name.

Raises a LookupError in case the handler cannot be found.
The following standard error handlers are also made available as module level functions:

codecs.strict_errors (exception)
Implements the 'strict ' error handling: each encoding or decoding error raises a UnicodeError.

codecs.replace_errors (exception)
Implements the ' replace' error handling (for fext encodings only): substitutes ' ? ' for encoding errors (to
be encoded by the codec), and ' \ufffd"' (the Unicode replacement character) for decoding errors.

codecs.ignore_errors (exception)
Implements the ' ignore ' error handling: malformed data is ignored and encoding or decoding is continued
without further notice.

codecs.xmlcharrefreplace_errors (exception)
Implements the 'xmlcharrefreplace’ error handling (for encoding with rext encodings only): the un-
encodable character is replaced by an appropriate XML character reference.

codecs .backslashreplace_errors (exception)
Implements the 'backslashreplace' error handling (for text encodings only): malformed data is re-
placed by a backslashed escape sequence.

codecs.namereplace_errors (exception)
Implements the 'namereplace' error handling (for encoding with zext encodings only): the unencodable
character is replaced by a \N{ . . . } escape sequence.

New in version 3.5.

Stateless Encoding and Decoding

The base Codec class defines these methods which also define the function interfaces of the stateless encoder and
decoder:

Codec.encode (input[, errors])
Encodes the object input and returns a tuple (output object, length consumed). For instance, fext encod-
ing converts a string object to a bytes object using a particular character set encoding (e.g., cpl1252 or
is0-8859-1).

The errors argument defines the error handling to apply. It defaults to ' st rict ' handling.

The method may not store state in the Codec instance. Use St reamir iter for codecs which have to keep
state in order to make encoding efficient.

The encoder must be able to handle zero length input and return an empty object of the output object type in
this situation.

Codec.decode (input[, errors])
Decodes the object input and returns a tuple (output object, length consumed). For instance, for a fext encoding,
decoding converts a bytes object encoded using a particular character set encoding to a string object.

For text encodings and bytes-to-bytes codecs, input must be a bytes object or one which provides the read-only
buffer interface - for example, buffer objects and memory mapped files.

The errors argument defines the error handling to apply. It defaults to 'strict ' handling.

The method may not store state in the Codec instance. Use St reamReader for codecs which have to keep
state in order to make decoding efficient.

The decoder must be able to handle zero length input and return an empty object of the output object type in
this situation.

158 Chapter 7. Binary Data Services

The Python Library Reference, Release 3.8.20

Incremental Encoding and Decoding

The IncrementalEncoder and IncrementalDecoder classes provide the basic interface for incremen-
tal encoding and decoding. Encoding/decoding the input isn’t done with one call to the stateless encoder/decoder
function, but with multiple calls to the encode ()/decode () method of the incremental encoder/decoder. The
incremental encoder/decoder keeps track of the encoding/decoding process during method calls.

The joined output of calls to the encode ()/decode () method is the same as if all the single inputs were joined
into one, and this input was encoded/decoded with the stateless encoder/decoder.

IncrementalEncoder Objects

The IncrementalEncoder class is used for encoding an input in multiple steps. It defines the following methods
which every incremental encoder must define in order to be compatible with the Python codec registry.

class codecs.IncrementalEncoder (errors='strict’)
Constructor for an TncrementalEncoder instance.

All incremental encoders must provide this constructor interface. They are free to add additional keyword
arguments, but only the ones defined here are used by the Python codec registry.

The TncrementalEncoder may implement different error handling schemes by providing the errors key-
word argument. See Error Handlers for possible values.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it pos-
sible to switch between different error handling strategies during the lifetime of the TncrementalEncoder
object.

encode (Object[, final])
Encodes object (taking the current state of the encoder into account) and returns the resulting encoded
object. If this is the last call to encode () final must be true (the default is false).

reset ()
Reset the encoder to the initial state. The output is discarded: call .encode (object,
final=True), passing an empty byte or text string if necessary, to reset the encoder and to get the
output.

getstate ()
Return the current state of the encoder which must be an integer. The implementation should make sure
that 0 is the most common state. (States that are more complicated than integers can be converted into
an integer by marshaling/pickling the state and encoding the bytes of the resulting string into an integer.)

setstate (state)
Set the state of the encoder to state. state must be an encoder state returned by getstate ().

IncrementalDecoder Objects

The ITncrementalDecoder class is used for decoding an input in multiple steps. It defines the following methods
which every incremental decoder must define in order to be compatible with the Python codec registry.

class codecs.IncrementalDecoder (errors=strict’)
Constructor for an TncrementalDecoder instance.

All incremental decoders must provide this constructor interface. They are free to add additional keyword
arguments, but only the ones defined here are used by the Python codec registry.

The IncrementalDecoder may implement different error handling schemes by providing the errors key-
word argument. See Error Handlers for possible values.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes it pos-
sible to switch between different error handling strategies during the lifetime of the TncrementalDecoder
object.

7.2. codecs — Codec registry and base classes 159

The Python Library Reference, Release 3.8.20

decode (object[, final])
Decodes object (taking the current state of the decoder into account) and returns the resulting decoded
object. If this is the last call to decode () final must be true (the default is false). If final is true the
decoder must decode the input completely and must flush all buffers. If this isn’t possible (e.g. because of
incomplete byte sequences at the end of the input) it must initiate error handling just like in the stateless
case (which might raise an exception).

reset ()
Reset the decoder to the initial state.

getstate ()

Return the current state of the decoder. This must be a tuple with two items, the first must be the
buffer containing the still undecoded input. The second must be an integer and can be additional state
info. (The implementation should make sure that O is the most common additional state info.) If this
additional state info is O it must be possible to set the decoder to the state which has no input buftered
and 0 as the additional state info, so that feeding the previously buffered input to the decoder returns it
to the previous state without producing any output. (Additional state info that is more complicated than
integers can be converted into an integer by marshaling/pickling the info and encoding the bytes of the
resulting string into an integer.)

setstate (state)
Set the state of the decoder to state. state must be a decoder state returned by getstate ().

Stream Encoding and Decoding

The StreamiWiriter and St reamReader classes provide generic working interfaces which can be used to im-
plement new encoding submodules very easily. See encodings.utf_8 for an example of how this is done.

StreamWriter Objects

The St reamiriter class is a subclass of Codec and defines the following methods which every stream writer
must define in order to be compatible with the Python codec registry.

class codecs.StreamWriter (stream, errors=strict’)

Constructor for a St reamiri t er instance.

All stream writers must provide this constructor interface. They are free to add additional keyword arguments,
but only the ones defined here are used by the Python codec registry.

The stream argument must be a file-like object open for writing text or binary data, as appropriate for the
specific codec.

The St reamiriter may implement different error handling schemes by providing the errors keyword ar-
gument. See Error Handlers for the standard error handlers the underlying stream codec may support.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes
it possible to switch between different error handling strategies during the lifetime of the St reamiriter
object.

write (object)
Writes the object’s contents encoded to the stream.

writelines (list)
Writes the concatenated list of strings to the stream (possibly by reusing the write () method). The
standard bytes-to-bytes codecs do not support this method.

reset ()
Flushes and resets the codec buffers used for keeping state.

Calling this method should ensure that the data on the output is put into a clean state that allows appending
of new fresh data without having to rescan the whole stream to recover state.

160

Chapter 7. Binary Data Services

The Python Library Reference, Release 3.8.20

In addition to the above methods, the St reamiriter must also inherit all other methods and attributes from the
underlying stream.

StreamReader Objects

The St reamReader class is a subclass of Codec and defines the following methods which every stream reader
must define in order to be compatible with the Python codec registry.

class codecs.StreamReader (stream, errors=>strict’)
Constructor for a St reamReader instance.

All stream readers must provide this constructor interface. They are free to add additional keyword arguments,
but only the ones defined here are used by the Python codec registry.

The stream argument must be a file-like object open for reading text or binary data, as appropriate for the
specific codec.

The St reamReader may implement different error handling schemes by providing the errors keyword ar-
gument. See Error Handlers for the standard error handlers the underlying stream codec may support.

The errors argument will be assigned to an attribute of the same name. Assigning to this attribute makes
it possible to switch between different error handling strategies during the lifetime of the St reamReader
object.

The set of allowed values for the errors argument can be extended with register _error ().

read ([size[, chars[, ﬁrstline]]])
Decodes data from the stream and returns the resulting object.

The chars argument indicates the number of decoded code points or bytes to return. The read ()
method will never return more data than requested, but it might return less, if there is not enough available.

The size argument indicates the approximate maximum number of encoded bytes or code points to read
for decoding. The decoder can modify this setting as appropriate. The default value -1 indicates to read
and decode as much as possible. This parameter is intended to prevent having to decode huge files in one
step.

The firstline flag indicates that it would be sufficient to only return the first line, if there are decoding
errors on later lines.

The method should use a greedy read strategy meaning that it should read as much data as is allowed
within the definition of the encoding and the given size, e.g. if optional encoding endings or state markers
are available on the stream, these should be read too.

readline ([size[, keepends]])
Read one line from the input stream and return the decoded data.

size, if given, is passed as size argument to the stream’s read () method.
If keepends is false line-endings will be stripped from the lines returned.

readlines ([sizehint[, keepends]])
Read all lines available on the input stream and return them as a list of lines.

Line-endings are implemented using the codec’s decode () method and are included in the list entries
if keepends is true.

sizehint, if given, is passed as the size argument to the stream’s read () method.

reset ()
Resets the codec buffers used for keeping state.

Note that no stream repositioning should take place. This method is primarily intended to be able to
recover from decoding errors.

In addition to the above methods, the St reamReader must also inherit all other methods and attributes from the
underlying stream.

7.2. codecs — Codec registry and base classes 161

The Python Library Reference, Release 3.8.20

StreamReaderWriter Objects

The St reamReaderWriter is a convenience class that allows wrapping streams which work in both read and
write modes.

The design is such that one can use the factory functions returned by the Iookup () function to construct the
instance.

class codecs.StreamReaderWriter (stream, Reader, Writer, errors='strict’)
Creates a St reamReaderWriter instance. stream must be a file-like object. Reader and Writer must
be factory functions or classes providing the St reamReader and St reamiriter interface resp. Error
handling is done in the same way as defined for the stream readers and writers.

StreamReaderWriter instances define the combined interfaces of St reamReader and StreamiWriter
classes. They inherit all other methods and attributes from the underlying stream.

StreamRecoder Objects

The St reamRecoder translates data from one encoding to another, which is sometimes useful when dealing with
different encoding environments.

The design is such that one can use the factory functions returned by the Iookup () function to construct the
instance.

class codecs.StreamRecoder (stream, encode, decode, Reader, Writer, errors='strict’)
Creates a St reamRecoder instance which implements a two-way conversion: encode and decode work on
the frontend — the data visible to code calling read () and write (), while Reader and Writer work on the
backend — the data in stream.

You can use these objects to do transparent transcodings, e.g., from Latin-1 to UTF-8 and back.
The stream argument must be a file-like object.

The encode and decode arguments must adhere to the Codec interface. Reader and Writer must be factory
functions or classes providing objects of the St reamReader and St reamWriter interface respectively.

Error handling is done in the same way as defined for the stream readers and writers.

StreamRecoder instances define the combined interfaces of St reamReader and St reamWriter classes.
They inherit all other methods and attributes from the underlying stream.

7.2.2 Encodings and Unicode

Strings are stored internally as sequences of code points in range 0x0-0x10FFFF. (See PEP 393 for more details
about the implementation.) Once a string object is used outside of CPU and memory, endianness and how these
arrays are stored as bytes become an issue. As with other codecs, serialising a string into a sequence of bytes is
known as encoding, and recreating the string from the sequence of bytes is known as decoding. There are a variety
of different text serialisation codecs, which are collectivity referred to as fext encodings.

The simplest text encoding (called 'latin—-1"' or 'iso-8859-1") maps the code points 0-255 to the bytes
0x0-0xff, which means that a string object that contains code points above U+00FF can’t be encoded with this
codec. Doing so will raise a UnicodeEncodeError that looks like the following (although the details of the error
message may differ): UnicodeEncodeError: 'latin-1' codec can't encode character '\
ul234' in position 3: ordinal not in range(256).

There’s another group of encodings (the so called charmap encodings) that choose a different subset of all Unicode
code points and how these code points are mapped to the bytes 0x0-0xf £. To see how this is done simply open e.g.
encodings/cpl252.py (which is an encoding that is used primarily on Windows). There’s a string constant
with 256 characters that shows you which character is mapped to which byte value.

All of these encodings can only encode 256 of the 1114112 code points defined in Unicode. A simple and straight-
forward way that can store each Unicode code point, is to store each code point as four consecutive bytes. There are

162 Chapter 7. Binary Data Services

https://www.python.org/dev/peps/pep-0393

The Python Library Reference, Release 3.8.20

two possibilities: store the bytes in big endian or in little endian order. These two encodings are called UTF-32-BE
and UTF-32-LE respectively. Their disadvantage is that if e.g. you use UTF-32-BE on a little endian machine
you will always have to swap bytes on encoding and decoding. UTF~-32 avoids this problem: bytes will always be in
natural endianness. When these bytes are read by a CPU with a different endianness, then bytes have to be swapped
though. To be able to detect the endianness of a UTF—16 or UTF—-32 byte sequence, there’s the so called BOM
(“Byte Order Mark”). This is the Unicode character U+FEFF. This character can be prepended to every UTF-16
or UTF-32 byte sequence. The byte swapped version of this character (0xFFFE) is an illegal character that may
not appear in a Unicode text. So when the first character in an UTF—16 or UTF—-32 byte sequence appears to be a
U+FFFE the bytes have to be swapped on decoding. Unfortunately the character U+FEFF had a second purpose as a
ZERO WIDTH NO-BREAK SPACE: a character that has no width and doesn’t allow a word to be split. It can e.g.
be used to give hints to a ligature algorithm. With Unicode 4.0 using U+FEFF as a ZERO WIDTH NO-BREAK
SPACE has been deprecated (with U+2060 (WORD JOINER) assuming this role). Nevertheless Unicode software
still must be able to handle U+FEFF in both roles: as a BOM it’s a device to determine the storage layout of the
encoded bytes, and vanishes once the byte sequence has been decoded into a string; asa ZERO WIDTH NO-BREAK
SPACE it’s a normal character that will be decoded like any other.

There’s another encoding that is able to encoding the full range of Unicode characters: UTF-8. UTF-8 is an 8-bit
encoding, which means there are no issues with byte order in UTF-8. Each byte in a UTF-8 byte sequence consists
of two parts: marker bits (the most significant bits) and payload bits. The marker bits are a sequence of zero to
four 1 bits followed by a 0 bit. Unicode characters are encoded like this (with x being payload bits, which when
concatenated give the Unicode character):

Range Encoding

U-00000000 ... U-0000007F | OXXXXXXX

U-00000080 ... U-000007FF | 110xxxxx 10XxXxXXXx

U-00000800 ... U-0000FFFF | 1110xxxx 10xxxxxx 10XXXXXX
U-00010000 ... U-0010FFFF | 11110xxx 10xxxxxx 10xxxxxx 10XXXXXX

The least significant bit of the Unicode character is the rightmost x bit.

As UTF-8 is an 8-bit encoding no BOM is required and any U+FEFF character in the decoded string (even if it’s the
first character) is treated as a ZERO WIDTH NO-BREAK SPACE.

Without external information it’s impossible to reliably determine which encoding was used for encoding a string.
Each charmap encoding can decode any random byte sequence. However that’s not possible with UTF-8, as UTF-8
byte sequences have a structure that doesn’t allow arbitrary byte sequences. To increase the reliability with which a
UTF-8 encoding can be detected, Microsoft invented a variant of UTF-8 (that Python 2.5 calls "ut £-8-sig") for
its Notepad program: Before any of the Unicode characters is written to the file, a UTF-8 encoded BOM (which looks
like this as a byte sequence: Oxef, Oxbb, Oxbf) is written. As it’s rather improbable that any charmap encoded
file starts with these byte values (which would e.g. map to

LATIN SMALL LETTER I WITH DIAERESIS
RIGHT-POINTING DOUBLE ANGLE QUOTATION MARK
INVERTED QUESTION MARK

in is0-8859-1), this increases the probability that a ut £-8-sig encoding can be correctly guessed from the byte
sequence. So here the BOM is not used to be able to determine the byte order used for generating the byte sequence,
but as a signature that helps in guessing the encoding. On encoding the utf-8-sig codec will write Oxef, Oxbb,
Oxbf as the first three bytes to the file. On decoding ut £-8-s1ig will skip those three bytes if they appear as the
first three bytes in the file. In UTF-8, the use of the BOM is discouraged and should generally be avoided.

7.2. codecs — Codec registry and base classes 163

The Python Library Reference, Release 3.8.20

7.2.3 Standard Encodings

Python comes with a number of codecs built-in, either implemented as C functions or with dictionaries as mapping
tables. The following table lists the codecs by name, together with a few common aliases, and the languages for which
the encoding is likely used. Neither the list of aliases nor the list of languages is meant to be exhaustive. Notice that
spelling alternatives that only differ in case or use a hyphen instead of an underscore are also valid aliases; therefore,
e.g. 'utf-8" is avalid alias for the 'ut£_8"' codec.

CPython implementation detail: Some common encodings can bypass the codecs lookup machinery to improve
performance. These optimization opportunities are only recognized by CPython for a limited set of (case insensitive)
aliases: utf-8, utf8, latin-1, latinl, is0-8859-1, i1s08859-1, mbcs (Windows only), ascii, us-ascii, utf-16, utf16, utf-
32, utf32, and the same using underscores instead of dashes. Using alternative aliases for these encodings may result
in slower execution.

Changed in version 3.6: Optimization opportunity recognized for us-ascii.

Many of the character sets support the same languages. They vary in individual characters (e.g. whether the EURO
SIGN is supported or not), and in the assignment of characters to code positions. For the European languages in
particular, the following variants typically exist:

o an ISO 8859 codeset

» a Microsoft Windows code page, which is typically derived from an 8859 codeset, but replaces control char-
acters with additional graphic characters

« an IBM EBCDIC code page
 an IBM PC code page, which is ASCII compatible

Codec Aliases Languages
ascii 646, us-ascii English
big5 big5-tw, csbig5 Traditional Chinese
big5hkscs big5-hkscs, hkscs Traditional Chinese
cp037 IBM037, IBM039 English
cp273 273, 1IBM273, csIBM273 German
New in version 3.4.
cp424 EBCDIC-CP-HE, IBM424 Hebrew
cp437 437, IBM437 English
cp500 EBCDIC-CP-BE, EBCDIC-CP- | Western Europe
CH, IBM500
cp720 Arabic
cp737 Greek
cp775 IBM775 Baltic languages
cp850 850, IBM850 Western Europe
cp852 852, IBM852 Central and Eastern Europe
cp855 855, IBM855 Bulgarian, Byelorussian, Macedo-
nian, Russian, Serbian
cp856 Hebrew
cp857 857, IBM&57 Turkish
cp858 858, IBM8B58 Western Europe
cp860 860, IBM860 Portuguese
cp861 861, CP-IS, IBM861 Icelandic
cp862 862, IBM862 Hebrew
cp863 863, IBM863 Canadian
cp864 IBM864 Arabic
cp865 865, IBM&65 Danish, Norwegian
cp866 866, IBM866 Russian
cp869 869, CP-GR, IBM869 Greek
cp874 Thai

Continued on next page

164

Chapter 7. Binary Data Services

The Python Library Reference, Release 3.8.20

Table 1 - continued from previous page

Codec Aliases Languages
cp875 Greek
cp932 932, ms932, mskanji, ms-kanji Japanese
cp949 949, ms949, uhc Korean
cp950 950, ms950 Traditional Chinese
cpl006 Urdu
cpl026 ibm1026 Turkish
cpll25 1125, ibm1125, cp866u, ruscii Ukrainian
New in version 3.4.
cpl140 ibm1140 Western Europe
cpl250 windows-1250 Central and Eastern Europe
cpl251 windows-1251 Bulgarian, Byelorussian, Macedo-
nian, Russian, Serbian

cpl252 windows-1252 Western Europe
cpl253 windows-1253 Greek
cpl254 windows-1254 Turkish
cpl255 windows-1255 Hebrew
cpl256 windows-1256 Arabic
cpl257 windows-1257 Baltic languages
cpl258 windows-1258 Vietnamese
euc_jp eucjp, ujis, u-jis Japanese
euc_jis_2004 jisx0213, eucjis2004 Japanese
euc_jisx0213 eucjisx0213 Japanese
euc_kr euckr, korean, ksc5601, ks_c- | Korean

5601, ks_c-5601-1987, ksx1001,

ks_x-1001
gb2312 chinese, csis058gb231280, euc- | Simplified Chinese

cn, euccn, eucgb2312-cn, gb2312-

1980, gb2312-80, iso-ir-58
gbk 936, cp936, ms936 Unified Chinese
gb18030 gb18030-2000 Unified Chinese
hz hzgb, hz-gb, hz-gb-2312 Simplified Chinese
1502022 _jp csis02022]jp, 1502022 jp, is0-2022- | Japanese

Jp
1502022_jp_1 1502022jp-1, is0-2022-jp-1 Japanese

i502022_jp_2

i502022jp-2, i50-2022-jp-2

Japanese, Korean, Simplified Chi-
nese, Western Europe, Greek

i502022_jp_2004

i502022jp-2004,
2004

150-2022-jp-

Japanese

1502022 _jp_3 is02022jp-3, is0-2022-jp-3 Japanese
1502022_jp_ext 1502022 jp-ext, is0-2022-jp-ext Japanese
1502022 _kr ¢sis02022kr, is02022kr, is0-2022- | Korean
kr
latin_1 is0-8859-1, is08859-1, 8859, | Western Europe
cp819, latin, latinl, L1
1508859_2 150-8859-2, latin2, L2 Central and Eastern Europe
1s08859_3 1s0-8859-3, latin3, L3 Esperanto, Maltese
1508859_4 150-8859-4, latind, L4 Baltic languages
1508859_5 is0-8859-5, cyrillic Bulgarian, Byelorussian, Macedo-
nian, Russian, Serbian
1508859_6 150-8859-6, arabic Arabic
1508859_7 is0-8859-7, greek, greek8 Greek
1508859_8 150-8859-8, hebrew Hebrew
1508859_9 150-8859-9, latin5, L5 Turkish
1508859_10 is0-8859-10, latin6, L6 Nordic languages

Continued on next page

7.2. codecs — Codec registry and base classes

165

The Python Library Reference, Release 3.8.20

Changed in version 3.4: The utf-16* and utf-32* encoders no longer allow surrogate code points (U+D800—
U+DFFF) to be encoded. The utf-32* decoders no longer decode byte sequences that correspond to surrogate code

points.

Table 1 - continued from previous page

Codec Aliases Languages
1s08859_11 1s0-8859-11, thai Thai languages
1508859_13 150-8859-13, latin7, L7 Baltic languages
1s08859_14 150-8859-14, 1atin8, L8 Celtic languages
1508859_15 150-8859-15, latin9, L9 Western Europe
1508859_16 1s0-8859-16, latin10, L10 South-Eastern Europe
johab cpl361, ms1361 Korean
koi8 r Russian
koi8_t Tajik

New in version 3.5.
koi8_u Ukrainian
kz1048 kz_ 1048, strk1048_2002, rk1048 | Kazakh

New in version 3.5.

mac_cyrillic maccyrillic Bulgarian, Byelorussian, Macedo-
nian, Russian, Serbian

mac_greek macgreek Greek
mac_iceland maciceland Icelandic
mac_latin2 maclatin2, maccentraleurope Central and Eastern Europe
mac_roman macroman, macintosh Western Europe
mac_turkish macturkish Turkish
ptepl54 csptepl54, pt154, cpl54, cyrillic- | Kazakh

asian
shift_jis csshiftjis, shiftjis, sjis, s_jis Japanese
shift_jis_2004 shiftjis2004, sjis_2004, sjis2004 Japanese
shift_jisx0213 shiftjisx0213, sjisx0213, | Japanese

s_jisx0213
utf_32 U32, utf32 all languages
utf 32 be UTF-32BE all languages
utf_32_le UTF-32LE all languages
utf 16 Ul6, utf16 all languages
utf_16_be UTF-16BE all languages
utf_16_le UTF-16LE all languages
utf_7 U7, unicode-1-1-utf-7 all languages
utf_8 U8, UTF, utf8, cp65001 all languages
utf_8_sig all languages

Changed in version 3.8: cp65001 is now an alias to ut £_8.

166

Chapter 7. Binary Data Services

The Python Library Reference, Release 3.8.20

7.2.4 Python Specific Encodings

A number of predefined codecs are specific to Python, so their codec names have no meaning outside Python. These
are listed in the tables below based on the expected input and output types (note that while text encodings are the
most common use case for codecs, the underlying codec infrastructure supports arbitrary data transforms rather than
just text encodings). For asymmetric codecs, the stated meaning describes the encoding direction.

Text Encodings

The following codecs provide st r to bytes encoding and bytes-like object to st r decoding, similar to the Unicode
text encodings.

Codec Aliases Meaning

idna Implement RFC 3490, see also
encodings. idna. Only
errors='strict' is sup-
ported.

mbcs ansi, dbcs Windows only: Encode the

operand according to the ANSI
codepage (CP_ACP).

oem Windows only: Encode the
operand according to the OEM
codepage (CP_OEMCP).

New in version 3.6.

palmos Encoding of PalmOS 3.5.

punycode Implement RFC 3492. Stateful
codecs are not supported.

raw_unicode_escape Latin-1 encoding with \uXXXX

and \UXXXXXXXX for other code
points. Existing backslashes are
not escaped in any way. It is used
in the Python pickle protocol.
undefined Raise an exception for all conver-
sions, even empty strings. The er-
ror handler is ignored.
unicode_escape Encoding suitable as the contents
of a Unicode literal in ASCII-
encoded Python source code, ex-
cept that quotes are not escaped.
Decode from Latin-1 source code.
Beware that Python source code
actually uses UTF-8 by default.

Changed in version 3.8: “unicode_internal” codec is removed.

Binary Transforms

The following codecs provide binary transforms: bytes-like object to byt es mappings. They are not supported by
bytes.decode () (which only produces st r output).

7.2. codecs — Codec registry and base classes 167

https://tools.ietf.org/html/rfc3490.html
https://tools.ietf.org/html/rfc3492.html

The Python Library Reference, Release 3.8.20

Codec Aliases Meaning Encoder / decoder
base64_codec! | base64, Convert the operand to multiline MIME base64 (the | baseé64.
base_64 result always includes a trailing '\n"). encodebytes () /
Changed in version 3.4: accepts any bytes-like object | base64.
as input for encoding and decoding decodebytes ()
bz2 codec bz2 Compress the operand using bz2. bz2.compress ()
/bz2.
decompress ()
hex_codec hex Convert the operand to hexadecimal representation, binascii.
with two digits per byte. b2a_hex () /
binascii.
a’Zb_hex ()
quopri_codec quopri, Convert the operand to MIME quoted printable. quopri.
quoted- encode () with
printable, quotetabs=True
quoted_printable / quopri.
decode ()
uu_codec uu Convert the operand using uuencode. uu.encode () /
uu.decode ()
zlib_codec zip, zlib Compress the operand using gzip. z1lib.
compress () /
z1lib.
decompress ()

New in version 3.2: Restoration of the binary transforms.
Changed in version 3.4: Restoration of the aliases for the binary transforms.
Text Transforms

The following codec provides a text transform: a st r to str mapping. It is not supported by str.encode ()
(which only produces bytes output).

Codec | Aliases | Meaning
rot_13 | rotl3 Return the Caesar-cypher encryption of the operand.

New in version 3.2: Restoration of the rot_ 13 text transform.

Changed in version 3.4: Restoration of the rot 13 alias.

7.2.5 encodings.idna — Internationalized Domain Names in Applications

This module implements RFC 3490 (Internationalized Domain Names in Applications) and RFC 3492 (Nameprep:
A Stringprep Profile for Internationalized Domain Names (IDN)). It builds upon the punycode encoding and
stringprep.

If you need the IDNA 2008 standard from RFC 5891 and RFC 5895, use the third-party idna module
<https://pypi.org/project/fidna/>_.

These RFCs together define a protocol to support non-ASCII characters in domain names. A domain name con-
taining non-ASCII characters (such as www.Alliancefranc¢aise.nu) is converted into an ASCII-compatible
encoding (ACE, such as www.xn--alliancefranaise-npb.nu). The ACE form of the domain name is
then used in all places where arbitrary characters are not allowed by the protocol, such as DNS queries, HTTP Host
fields, and so on. This conversion is carried out in the application; if possible invisible to the user: The application

! In addition to bytes-like objects, *base64_codec' also accepts ASCI-only instances of st r for decoding

168 Chapter 7. Binary Data Services

https://tools.ietf.org/html/rfc3490.html
https://tools.ietf.org/html/rfc3492.html
https://tools.ietf.org/html/rfc5891.html
https://tools.ietf.org/html/rfc5895.html

The Python Library Reference, Release 3.8.20

should transparently convert Unicode domain labels to IDNA on the wire, and convert back ACE labels to Unicode
before presenting them to the user.

Python supports this conversion in several ways: the idna codec performs conversion between Unicode and ACE,
separating an input string into labels based on the separator characters defined in section 3.1 of RFC 3490 and
converting each label to ACE as required, and conversely separating an input byte string into labels based on the .
separator and converting any ACE labels found into unicode. Furthermore, the socket module transparently con-
verts Unicode host names to ACE, so that applications need not be concerned about converting host names themselves
when they pass them to the socket module. On top of that, modules that have host names as function parameters,
such as http.client and ftplib, accept Unicode host names (http. client then also transparently sends
an IDNA hostname in the Host field if it sends that field at all).

When receiving host names from the wire (such as in reverse name lookup), no automatic conversion to Unicode is
performed: applications wishing to present such host names to the user should decode them to Unicode.

The module encodings. idna also implements the nameprep procedure, which performs certain normalizations
on host names, to achieve case-insensitivity of international domain names, and to unify similar characters. The
nameprep functions can be used directly if desired.

encodings.idna.nameprep (label)
Return the nameprepped version of label. The implementation currently assumes query strings, so
AllowUnassigned is true.

encodings.idna.ToASCII (label)
Convert a label to ASCII, as specified in RFC 3490. UseSTD3ASCIIRules is assumed to be false.

encodings.idna.ToUnicode (label)
Convert a label to Unicode, as specified in RFC 3490.

7.2.6 encodings.mbcs — Windows ANSI codepage

This module implements the ANSI codepage (CP_ACP).
Availability: Windows only.
Changed in version 3.3: Support any error handler.

Changed in version 3.2: Before 3.2, the errors argument was ignored; ' replace' was always used to encode, and
'ignore' to decode.

7.2.7 encodings.utf_8_sig— UTF-8 codec with BOM signature

This module implements a variant of the UTF-8 codec. On encoding, a UTF-8 encoded BOM will be prepended to
the UTF-8 encoded bytes. For the stateful encoder this is only done once (on the first write to the byte stream). On
decoding, an optional UTF-8 encoded BOM at the start of the data will be skipped.

7.2. codecs — Codec registry and base classes 169

https://tools.ietf.org/html/rfc3490.html#section-3.1
https://tools.ietf.org/html/rfc3490.html
https://tools.ietf.org/html/rfc3490.html

The Python Library Reference, Release 3.8.20

170 Chapter 7. Binary Data Services

CHAPTER
EIGHT

DATA TYPES

The modules described in this chapter provide a variety of specialized data types such as dates and times, fixed-type
arrays, heap queues, double-ended queues, and enumerations.

Python also provides some built-in data types, in particular, dict, 1ist, set and frozenset,and tuple. The
st r class is used to hold Unicode strings, and the bytes and bytearray classes are used to hold binary data.

The following modules are documented in this chapter:

8.1 datetime — Basic date and time types

Source code: Lib/datetime.py

The datet ime module supplies classes for manipulating dates and times.

While date and time arithmetic is supported, the focus of the implementation is on efficient attribute extraction for
output formatting and manipulation.

See also:
Module calendar General calendar related functions.
Module time Time access and conversions.

Package dateutil Third-party library with expanded time zone and parsing support.

8.1.1 Aware and Naive Objects

Date and time objects may be categorized as “aware” or “naive” depending on whether or not they include timezone
information.

With sufficient knowledge of applicable algorithmic and political time adjustments, such as time zone and daylight
saving time information, an aware object can locate itself relative to other aware objects. An aware object represents
a specific moment in time that is not open to interpretation.'

A naive object does not contain enough information to unambiguously locate itself relative to other date/time objects.
Whether a naive object represents Coordinated Universal Time (UTC), local time, or time in some other timezone
is purely up to the program, just like it is up to the program whether a particular number represents metres, miles, or
mass. Naive objects are easy to understand and to work with, at the cost of ignoring some aspects of reality.

For applications requiring aware objects, datetime and time objects have an optional time zone information
attribute, t zinfo, that can be set to an instance of a subclass of the abstract t zinfo class. These t zinfo objects
capture information about the offset from UTC time, the time zone name, and whether daylight saving time is in
effect.

LIf, that is, we ignore the effects of Relativity

171

https://github.com/python/cpython/tree/3.8/Lib/datetime.py
https://dateutil.readthedocs.io/en/stable/

The Python Library Reference, Release 3.8.20

Only one concrete t zinfo class, the t imezone class, is supplied by the datet ime module. The t imezone
class can represent simple timezones with fixed offsets from UTC, such as UTC itself or North American EST
and EDT timezones. Supporting timezones at deeper levels of detail is up to the application. The rules for time
adjustment across the world are more political than rational, change frequently, and there is no standard suitable for
every application aside from UTC.

8.1.2 Constants

The datet ime module exports the following constants:

datetime .MINYEAR
The smallest year number allowed in a date or datet ime object. MINYEAR s 1.

datetime.MAXYEAR
The largest year number allowed in a date or datet ime object. MAXYEARis 9999.

8.1.3 Available Types

class datetime.date
An idealized naive date, assuming the current Gregorian calendar always was, and always will be, in effect.
Attributes: year, month, and day.

class datetime.time
An idealized time, independent of any particular day, assuming that every day has exactly 24*60*60 seconds.
(There is no notion of “leap seconds” here.) Attributes: hour, minute, second, microsecond, and
tzinfo.

class datetime.datetime
A combination of a date and a time. Attributes: year, month, day, hour, minute, second,
microsecond,and tzinfo.

class datetime.timedelta
A duration expressing the difference between two date, time, or datetime instances to microsecond
resolution.

class datetime.tzinfo
An abstract base class for time zone information objects. These are used by the datet ime and t ime classes
to provide a customizable notion of time adjustment (for example, to account for time zone and/or daylight
saving time).

class datetime.timezone
A class that implements the t z1info abstract base class as a fixed offset from the UTC.

New in version 3.2.
Objects of these types are immutable.

Subclass relationships:

object
timedelta
tzinfo
timezone
time
date
datetime

172 Chapter 8. Data Types

The Python Library Reference, Release 3.8.20

Common Properties

The date, datetime, t ime, and t imezone types share these common features:

» Objects of these types are immutable.

« Objects of these types are hashable, meaning that they can be used as dictionary keys.

o Objects of these types support efficient pickling via the pick 1 e module.

Determining if an Object is Aware or Naive

Objects of the date type are always naive.
An object of type t ime or datet ime may be aware or naive.
A datet ime object d is aware if both of the following hold:

1. d.tzinfo is not None

2. d.tzinfo.utcoffset (d) does not return None
Otherwise, d is naive.
A time object ¢ is aware if both of the following hold:

1. t.tzinfo is not None

2. t.tzinfo.utcoffset (None) does not return None.
Otherwise, ¢ is naive.

The distinction between aware and naive doesn’t apply to t imede 1t a objects.

8.1.4 timedelta Objects

A timedelta object represents a duration, the difference between two dates or times.

class datetime.timedelta (days=0, seconds=0, microseconds=0, milliseconds=0, minutes=0,

hours=0, weeks=0)

All arguments are optional and default to 0. Arguments may be integers or floats, and may be positive or

negative.

Only days, seconds and microseconds are stored internally. Arguments are converted to those units:

o A millisecond is converted to 1000 microseconds.
o A minute is converted to 60 seconds.
« An hour is converted to 3600 seconds.

o A week is converted to 7 days.

and days, seconds and microseconds are then normalized so that the representation is unique, with

e 0 <= microseconds < 1000000
e 0 <= seconds < 3600%*24 (the number of seconds in one day)

¢ —999999999 <= days <= 999999999

The following example illustrates how any arguments besides days, seconds and microseconds are “merged”

and normalized into those three resulting attributes:

>>> from datetime import timedelta
>>> delta = timedelta(

days=50,

seconds=27,

(continues on next page)

8.1. datetime — Basic date and time types

173

The Python Library Reference, Release 3.8.20

(continued from previous page)

microseconds=10,
milliseconds=29000,
minutes=5,
hours=8,
weeks=2
)
>>> # Only days, seconds, and microseconds remain
>>> delta
datetime.timedelta (days=64, seconds=29156, microseconds=10)

If any argument is a float and there are fractional microseconds, the fractional microseconds left over from
all arguments are combined and their sum is rounded to the nearest microsecond using round-half-to-even
tiebreaker. If no argument is a float, the conversion and normalization processes are exact (no information is
lost).

If the normalized value of days lies outside the indicated range, OverflowError is raised.

Note that normalization of negative values may be surprising at first. For example:

>>> from datetime import timedelta

>>> d = timedelta (microseconds=-1)

>>> (d.days, d.seconds, d.microseconds)
(-1, 86399, 999999)

Class attributes:

timedelta.min
The most negative t imedelta object, timedelta (-999999999).

timedelta.max
The most positive timedelta object, timedelta (days=999999999, hours=23,
minutes=59, seconds=59, microseconds=999999).

timedelta.resolution
The smallest possible difference between non-equal timedelta objects,
timedelta (microseconds=1).

Note that, because of normalization, timedelta.max > -timedelta.min. —timedelta.max is not rep-
resentable as a t imedelta object.

Instance attributes (read-only):

Attribute Value

days Between -999999999 and 999999999 inclusive
seconds Between 0 and 86399 inclusive
microseconds | Between O and 999999 inclusive

Supported operations:

174 Chapter 8. Data Types

The Python Library Reference, Release 3.8.20

Operation Result

tl = t2 + t3 Sum of £2 and 3. Afterwards ¢/-2 == t3 and t1-t3 == 12 are true. (1)

tl = t2 - t3 Difference of 2 and 3. Afterwards t/ == 12 - ¢3 and 2 == tI + 13 are true. (1)(6)

tl = t2 * i or Delta multiplied by an integer. Afterwards ¢/ /i ==12is true, provided i != 0.

tl =1 * t2
In general, ¢t/ *i==1tI * (i-1) + ¢1 is true. (1)

tl = t2 * £ or Delta multiplied by a float. The result is rounded to the nearest multiple of

tl = £ * t2 timedelta.resolution using round-half-to-even.

f=1t2 / t3 Division (3) of overall duration ¢2 by interval unit 3. Returns a f1oat object.

tl = t2 / f or Delta divided by a float or an int. The result is rounded to the nearest multiple of

tl =t2 / 1 timedelta.resolution using round-half-to-even.

tl = t2 // 1 or t1 | Theflooris computed and the remainder (if any) is thrown away. In the second case,

=t2 // t3 an integer is returned. (3)

tl = t2 % t3 The remainder is computed as a t imedelta object. (3)

q, r = Computes the quotient and the remainder: g = t1 // t2(3)andr = t1 %

divmod (tl, t2) t2. qisaninteger and ris a t imedelta object.

+t1 Returns a t imede 1t a object with the same value. (2)

-t1 equivalent to timedelta(-tl.days, -tl.seconds, -tl.microseconds), and to t1* -1.
A

abs (t) equivalent to +7 when t . days >= 0,andto-fwhen t.days < 0.(2)

str(t) Returns a string in the form [D day[s],][H]JH:MM:SS[.UUUUUU], where
D is negative for negative t. (5)

repr (t) Returns a string representation of the ¢ imede 1t a object as a constructor call with
canonical attribute values.

Notes:

(1) This is exact but may overflow.

(2) This is exact and cannot overflow.

(3) Division by O raises ZeroDivisionError

(4) -timedelta.max is not representable as a t imedelta object.

(5) String representations of timedelta objects are normalized similarly to their internal representation. This

(6)

leads to somewhat unusual results for negative timedeltas. For example:

>>> timedelta (hours=-5)
datetime.timedelta (days=-1,
>>> print (_)

-1 day, 19:00:00

seconds=68400)

The expression t2 - t3 will always be equal to the expression t2 + (-t3) except when t3 is equal to
timedelta.max; in that case the former will produce a result while the latter will overflow.

In addition to the operations listed above, t i mede 1t a objects support certain additions and subtractions with date
and datetime objects (see below).

Changed in version 3.2: Floor division and true division of a t imedelta object by another t imedelta object
are now supported, as are remainder operations and the divmod () function. True division and multiplication of a
timedelta object by a f1oat object are now supported.

Comparisons of t imedelta objects are supported, with some caveats.

The comparisons == or ! = always return a boo 1, no matter the type of the compared object:

>>> from datetime import timedelta
>>> deltal = timedelta (seconds=57)
>>> delta?2 = timedelta (hours=25, seconds=2)
>>> deltaz != deltal
(continues on next page)
8.1. datetime — Basic date and time types 175

The Python Library Reference, Release 3.8.20

(continued from previous page)

True
>>> delta2 ==
False

For all other comparisons (such as < and >), when a t imede 1t a object is compared to an object of a different type,
TypeError is raised:

>>> delta2 > deltal
True
>>> delta2 > 5
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: '>' not supported between instances of 'datetime.timedelta' and 'int'

In Boolean contexts, a t imede 1t a object is considered to be true if and only if it isn’t equal to t imedelta (0).
Instance methods:

timedelta.total_seconds ()
Return the total number of seconds contained in the duration. Equivalent to td /
timedelta (seconds=1). For interval units other than seconds, use the division form directly
(e.g. td / timedelta (microseconds=1)).

Note that for very large time intervals (greater than 270 years on most platforms) this method will lose mi-
crosecond accuracy.

New in version 3.2.

Examples of usage: timedelta

An additional example of normalization:

>>> # Components of another_year add up to exactly 365 days
>>> from datetime import timedelta

>>> year = timedelta (days=365)

>>> another_year = timedelta (weeks=40, days=84, hours=23,
. minutes=50, seconds=600)

>>> year == another_year

True
>>> year.total_seconds ()
31536000.0

Examples of timedelta arithmetic:

>>> from datetime import timedelta
>>> year = timedelta (days=365)

>>> ten_years = 10 * year

>>> ten_years

datetime.timedelta (days=3650)

>>> ten_years.days // 365

10

>>> nine_years = ten_years - year
>>> nine_years

datetime.timedelta (days=3285)

>>> three_years = nine_years // 3
>>> three_years, three_years.days // 365
(datetime.timedelta (days=1095), 3)

176 Chapter 8. Data Types

The Python Library Reference, Release 3.8.20

8.1.5 date Objects

A date object represents a date (year, month and day) in an idealized calendar, the current Gregorian calendar
indefinitely extended in both directions.

January 1 of year 1 is called day number 1, January 2 of year 1 is called day number 2, and so on.”

class datetime.date (year, month, day)
All arguments are required. Arguments must be integers, in the following ranges:

e MINYEAR <= year <= MAXYEAR
e 1 <= month <= 12
e 1 <= day <= number of days in the given month and year
If an argument outside those ranges is given, ValueError is raised.
Other constructors, all class methods:

classmethod date.today ()
Return the current local date.

This is equivalent to date . fromtimestamp (time.time ()).

classmethod date.fromtimestamp (timestamp)
Return the local date corresponding to the POSIX timestamp, such as is returned by t ime. time ().

This may raise OverflowError, if the timestamp is out of the range of values supported by the platform
C localtime () function, and OSError on localtime () failure. It’'s common for this to be restricted
to years from 1970 through 2038. Note that on non-POSIX systems that include leap seconds in their notion
of a timestamp, leap seconds are ignored by fromt imestamp ().

Changed in version 3.3: Raise OverflowError instead of ValueError if the timestamp is out of
the range of values supported by the platform C localtime () function. Raise OSError instead of
ValueErroron localtime () failure.

classmethod date.fromordinal (ordinal)
Return the date corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has ordinal 1.

ValueError is raised unless 1 <= ordinal <= date.max.toordinal (). For any date d,
date.fromordinal (d.toordinal ()) ==

classmethod date.fromisoformat (date_string)
Return a dat e corresponding to a date_string given in the format YYYY-MM-DD:

>>> from datetime import date
>>> date.fromisoformat ('2019-12-04")
datetime.date (2019, 12, 4)

This is the inverse of date. isoformat (). It only supports the format YYYY~-MM-DD.
New in version 3.7.

classmethod date.fromisocalendar (year, week, day)
Return a date corresponding to the ISO calendar date specified by year, week and day. This is the inverse of
the function date. isocalendar ().

New in version 3.8.
Class attributes:

date.min
The earliest representable date, date (MINYEAR, 1, 1).

2 This matches the definition of the “proleptic Gregorian” calendar in Dershowitz and Reingold’s book Calendrical Calculations, where it’s the
base calendar for all computations. See the book for algorithms for converting between proleptic Gregorian ordinals and many other calendar
systems.

8.1. datetime — Basic date and time types 177

The Python Library Reference, Release 3.8.20

date.max

The latest representable date, date (MAXYEAR, 12, 31).

date.resolution

The smallest possible difference between non-equal date objects, t imedelta (days=1).

Instance attributes (read-only):

date.year

Between MINYEAR and MAXYEAR inclusive.

date.month

Between 1 and 12 inclusive.

date.day

Between 1 and the number of days in the given month of the given year.

Supported operations:

Operation Result

date2 = datel + date? is t imedelta.days days removed from datel. (1)

timedelta

date2 = datel - Computes date2 such that date2 + timedelta == datel. (2)

timedelta

timedelta = datel - 3)

date?2

datel < date2 datel is considered less than date2 when datel precedes date2 in time.
“)

Notes:
(1) date2 is moved forward in time if t imedelta.days > 0, or backward if timedelta.days < O.

2)
3)

“4)

Afterward date2 - datel == timedelta.days. timedelta.seconds and timedelta.
microseconds are ignored. OverflowError is raised if date2.year would be smaller than
MINYEAR or larger than MAXYEAR.

timedelta.seconds and timedelta.microseconds are ignored.

This is exact, and cannot overflow. timedelta.seconds and timedelta.microseconds are 0, and date2 + timedelta
== datel after.

In other words, datel < date?2 if and only if datel.toordinal () < date2.toordinal ().
Date comparison raises TypeError if the other comparand isnm’t also a date object. However,
NotImplemented is returned instead if the other comparand has a t imetuple () attribute. This hook
gives other kinds of date objects a chance at implementing mixed-type comparison. If not, when a date
object is compared to an object of a different type, TypeError is raised unless the comparison is == or ! =.
The latter cases return False or True, respectively.

In Boolean contexts, all date objects are considered to be true.

Instance methods:

date.replace (year=self.year, month=self.month, day=self.day)

Return a date with the same value, except for those parameters given new values by whichever keyword argu-
ments are specified.

Example:

>>> from datetime import date
>>> d = date (2002, 12, 31)
>>> d.replace (day=26)
datetime.date (2002, 12, 26)

date.timetuple ()

Return a t ime. st ruct_time such as returned by t ime. localtime ().

178

Chapter 8. Data Types

The Python Library Reference, Release 3.8.20

The hours, minutes and seconds are 0, and the DST flag is -1.

d.timetuple () is equivalent to:

time.struct_time((d.year, d.month, d.day, 0, 0, 0, d.weekday(), yday, -1))

where yday = d.toordinal() - date(d.year, 1, 1).toordinal() + 1isthedaynum-
ber within the current year starting with 1 for January Ist.

date.toordinal ()
Return the proleptic Gregorian ordinal of the date, where January 1 of year 1 has ordinal 1. For any date
objectd, date.fromordinal (d.toordinal ()) ==

date.weekday ()
Return the day of the week as an integer, where Monday is 0 and Sunday is 6. For example, date (2002,
12, 4) .weekday () == 2,a Wednesday. See also i soweekday ().

date.isoweekday ()
Return the day of the week as an integer, where Monday is 1 and Sunday is 7. For example, date (2002,
12, 4).isoweekday () == 3,a Wednesday. See also weekday (), isocalendar ().

date.isocalendar ()
Return a 3-tuple, (ISO year, ISO week number, ISO weekday).

The ISO calendar is a widely used variant of the Gregorian calendar.’

The ISO year consists of 52 or 53 full weeks, and where a week starts on a Monday and ends on a Sunday. The
first week of an ISO year is the first (Gregorian) calendar week of a year containing a Thursday. This is called
week number 1, and the ISO year of that Thursday is the same as its Gregorian year.

For example, 2004 begins on a Thursday, so the first week of ISO year 2004 begins on Monday, 29 Dec 2003
and ends on Sunday, 4 Jan 2004:

>>> from datetime import date

>>> date (2003, 12, 29).isocalendar ()
(2004, 1, 1)

>>> date (2004, 1, 4).isocalendar()
(2004, 1, 7)

date.isoformat ()
Return a string representing the date in ISO 8601 format, YYYY-MM-DD:

>>> from datetime import date
>>> date (2002, 12, 4).isoformat ()
'2002-12-04"

This is the inverse of date. fromisoformat ().

date.__str__ ()
For a date d, st r (d) is equivalent to d.isoformat ().

date.ctime ()
Return a string representing the date:

>>> from datetime import date
>>> date (2002, 12, 4).ctime()
'Wed Dec 4 00:00:00 2002

d.ctime () is equivalent to:

time.ctime (time.mktime (d.timetuple()))

on platforms where the native C ctime () function (which time.ctime () invokes, but which date.
ctime () does not invoke) conforms to the C standard.

3 See R. H. van Gent’s guide to the mathematics of the ISO 8601 calendar for a good explanation.

8.1. datetime — Basic date and time types 179

https://www.staff.science.uu.nl/~gent0113/calendar/isocalendar.htm

The Python Library Reference, Release 3.8.20

date.strftime (format)
Return a string representing the date, controlled by an explicit format string. Format codes referring to hours,
minutes or seconds will see 0 values. For a complete list of formatting directives, see strftime() and strptime()
Behavior.

date.__ format__ (format)
Same as date. st rftime (). This makes it possible to specify a format string for a dat e object in format-
ted string literals and when using st r. format (). For a complete list of formatting directives, see strftime()
and strptime() Behavior.

Examples of Usage: date

Example of counting days to an event:

>>> import time

>>> from datetime import date

>>> today = date.today ()

>>> today

datetime.date (2007, 12, 5)

>>> today == date.fromtimestamp (time.time ())
True

>>> my_birthday = date(today.year, 6, 24)

>>> if my_birthday < today:

.. my_birthday = my_birthday.replace(year=today.year + 1)
>>> my_birthday

datetime.date (2008, 6, 24)

>>> time_to_birthday = abs (my_birthday - today)
>>> time_to_birthday.days

202

More examples of working with date:

>>> from datetime import date

>>> d = date.fromordinal (730920) # 730920th day after 1. 1. 0001
>>> d

datetime.date (2002, 3, 11)

>>> # Methods related to formatting string output
>>> d.isoformat ()

'2002-03-11"

>>> d.strftime ("%d/%m/%y")
'11/03/02"

>>> d.strftime ("%A Sd. %B $Y")

'Monday 11. March 2002'

>>> d.ctime ()

'Mon Mar 11 00:00:00 2002"'

>>> 'The {1} is {0:%d}, the {2} is {0:%B}.'.format (d, "day", "month")
'The day is 11, the month is March.'

>>> # Methods for to extracting 'components' under different calendars
>>> t = d.timetuple ()
>>> for i in t:

ce print (i)

2002 # year

3 # month

11 # day

0

0

0

0 # weekday (0 = Monday)
70 # 70th day in the year

(continues on next page)

180 Chapter 8. Data Types

The Python Library Reference, Release 3.8.20

(continued from previous page)

-1
>>> ic = d.isocalendar ()
>>> for i in ic:

C. print (1)

2002 # ISO year

11 # ISO week number

1 # ISO day number (1 = Monday)

>>> # A date object is immutable; all operations produce a new object
>>> d.replace (year=2005)
datetime.date (2005, 3, 11)

8.1.6 datetime Objects

A datet ime object is a single object containing all the information from a dat e object and a t ime object.

Like a date object, datet ime assumes the current Gregorian calendar extended in both directions; like a t ime
object, datet ime assumes there are exactly 3600%24 seconds in every day.

Constructor:

class datetime.datetime (year, month, day, hour=0, minute=0, second=0, microsecond=0, tz-
info=None, *, fold=0)
The year, month and day arguments are required. #zinfo may be None, or an instance of a ¢ zinfo subclass.
The remaining arguments must be integers in the following ranges:

e MINYEAR <= year <= MAXYEAR,

e 1 <= month <= 12,

<= day <= number of days in the given month and year,
<= hour < 24,

minute < 60,

<= second < 60,

L]

o o o o
A
Il

<= microsecond < 1000000,
e fold in [0, 1].
If an argument outside those ranges is given, Va lueError is raised.
New in version 3.6: Added the fold argument.
Other constructors, all class methods:

classmethod datetime.today ()
Return the current local datetime, with £ zinfo None.

Equivalent to:

datetime.fromtimestamp (time.time ())

See also now (), fromtimestamp ().
This method is functionally equivalent to now (), but without a t z parameter.

classmethod datetime.now (1z=None)
Return the current local date and time.

If optional argument #z is None or not specified, this is like today (), but, if possible, supplies more precision
than can be gotten from going through a t ime. time () timestamp (for example, this may be possible on
platforms supplying the C gettimeofday () function).

8.1. datetime — Basic date and time types 181

The Python Library Reference, Release 3.8.20

If #z is not None, it must be an instance of a t z1n fo subclass, and the current date and time are converted
to t7’s time zone.

This function is preferred over today () and utcnow ().

classmethod datetime.utcnow ()
Return the current UTC date and time, with t zinfo None.

This is like now (), but returns the current UTC date and time, as a naive datet ime object. An aware
current UTC datetime can be obtained by calling datetime.now (timezone.utc). See also now ().

Warning: Because naive datet ime objects are treated by many datet ime methods as local times,
it is preferred to use aware datetimes to represent times in UTC. As such, the recommended way to create
an object representing the current time in UTC is by calling datetime.now (timezone.utc).

classmethod datetime.fromtimestamp (timestamp, tz=None)
Return the local date and time corresponding to the POSIX timestamp, such as is returned by t ime . t ime ().
If optional argument ¢z is None or not specified, the timestamp is converted to the platform’s local date and
time, and the returned dat et ime object is naive.

If #z is not None, it must be an instance of a t zinfo subclass, and the timestamp is converted to #z’s time
Zone.

fromtimestamp () may raise OverflowError, if the timestamp is out of the range of values sup-
ported by the platform C localtime () or gmtime () functions, and OSError on localtime ()
or gmtime () failure. It’'s common for this to be restricted to years in 1970 through 2038. Note that on
non-POSIX systems that include leap seconds in their notion of a timestamp, leap seconds are ignored by
fromtimestamp (), and then it’s possible to have two timestamps differing by a second that yield identical
datet ime objects. This method is preferred over ut cfromt imestamp ().

Changed in version 3.3: Raise OverflowError instead of ValueError if the timestamp is out of the
range of values supported by the platform C localtime () or gmtime () functions. Raise OSError
instead of ValueErroron localtime () or gmtime () failure.

Changed in version 3.6: fromtimestamp () may return instances with fold setto 1.

classmethod datetime.utcfromtimestamp (fimestamp)
Return the UTC datet ime corresponding to the POSIX timestamp, with t zinfo None. (The resulting
object is naive.)

This may raise OverflowError, if the timestamp is out of the range of values supported by the platform
C gmtime () function, and OSError on gmtime () failure. It's common for this to be restricted to years
in 1970 through 2038.

To get an aware datet ime object, call fromtimestamp ():

’datetime.fromtimestamp(timestamp, timezone.utc)

On the POSIX compliant platforms, it is equivalent to the following expression:

’datetime(i970, 1, 1, tzinfo=timezone.utc) + timedelta (seconds=timestamp)

except the latter formula always supports the full years range: between MINYEAR and MAXYEAR inclusive.

Warning: Because naive datetime objects are treated by many datetime methods as lo-
cal times, it is preferred to use aware datetimes to represent times in UTC. As such, the recom-
mended way to create an object representing a specific timestamp in UTC is by calling datetime.
fromtimestamp (timestamp, tz=timezone.utc).

Changed in version 3.3: Raise OverflowError instead of ValueError if the timestamp is out of the
range of values supported by the platform C gmt ime () function. Raise OSErrorinstead of ValueError

182 Chapter 8. Data Types

The Python Library Reference, Release 3.8.20

on gmt ime () failure.

classmethod datetime.fromordinal (ordinal)
Return the dat et ime corresponding to the proleptic Gregorian ordinal, where January 1 of year 1 has ordinal
1. ValueError is raised unless 1 <= ordinal <= datetime.max.toordinal (). The hour,
minute, second and microsecond of the result are all 0, and t zinfois None.

classmethod datetime.combine (date, time, tzinfo=self.tzinfo)
Return a new datet ime object whose date components are equal to the given date object’s, and whose
time components are equal to the given t ime object’s. If the #zinfo argument is provided, its value is used to
set the t zinfo attribute of the result, otherwise the t zinfo attribute of the time argument is used.

For any datetime objectd, d == datetime.combine(d.date(), d.time(), d.tzinfo).
If date is a dat et ime object, its time components and t z i nfo attributes are ignored.

Changed in version 3.6: Added the fzinfo argument.

classmethod datetime.fromisoformat (date_string)
Return a datet ime corresponding to a date_string in one of the formats emitted by date. isoformat ()
and datetime.isoformat ().

Specifically, this function supports strings in the format:

YYYY-MM-DD [*HH[:MM[:SS[.£f££[£f££]]]] [+HH:MM[:SS[.f££f££f£]]1]]

where * can match any single character.

Caution: This does not support parsing arbitrary ISO 8601 strings - it is only intended as the inverse op-
eration of datetime. isoformat (). A more full-featured ISO 8601 parser, dateutil.parser.
isoparse is available in the third-party package dateutil.

Examples:

>>> from datetime import datetime

>>> datetime.fromisoformat ('2011-11-04")

datetime.datetime (2011, 11, 4, 0, 0)

>>> datetime.fromisoformat ('2011-11-04T00:05:23")

datetime.datetime (2011, 11, 4, 0, 5, 23)

>>> datetime.fromisoformat ('2011-11-04 00:05:23.283")

datetime.datetime (20121, 11, 4, 0, 5, 23, 283000)

>>> datetime.fromisoformat ('2011-11-04 00:05:23.283+00:00")

datetime.datetime (2011, 11, 4, 0, 5, 23, 283000, tzinfo=datetime.timezone.utc)

>>> datetime.fromisoformat ('2011-11-04T00:05:23+04:00")

datetime.datetime (2011, 11, 4, 0, 5, 23,
tzinfo=datetime.timezone (datetime.timedelta (seconds=14400)))

New in version 3.7.

classmethod datetime.fromisocalendar (year, week, day)
Return a datet ime corresponding to the ISO calendar date specified by year, week and day. The non-date
components of the datetime are populated with their normal default values. This is the inverse of the function
datetime.isocalendar().

New in version 3.8.

classmethod datetime.strptime (date_string, format)
Return a datet ime corresponding to date_string, parsed according to format.

This is equivalent to:

datetime (* (time.strptime (date_string, format) [0:6]))

8.1. datetime — Basic date and time types 183

https://dateutil.readthedocs.io/en/stable/parser.html#dateutil.parser.isoparse

The Python Library Reference, Release 3.8.20

ValueError israised if the date_string and format can’t be parsed by t ime. st rptime () or if it returns
a value which isn’t a time tuple. For a complete list of formatting directives, see strftime() and strptime()
Behavior.

Class attributes:

datetime.min
The earliest representable datet ime, datetime (MINYEAR, 1, 1, tzinfo=None).

datetime.max
The latest representable datetime, datetime (MAXYEAR, 12, 31, 23, 59, 59, 999999,
tzinfo=None).

datetime.resolution
The smallest possible difference between non-equal datetime objects,
timedelta (microseconds=1).

Instance attributes (read-only):

datetime.year
Between MINYEAR and MAXYEAR inclusive.

datetime.month
Between 1 and 12 inclusive.

datetime.day
Between 1 and the number of days in the given month of the given year.

datetime.hour
In range (24).

datetime.minute
In range (60).

datetime.second
In range (60).

datetime.microsecond
In range (1000000).

datetime.tzinfo
The object passed as the tzinfo argument to the dat et ime constructor, or None if none was passed.

datetime. fold
In [0, 1]. Used to disambiguate wall times during a repeated interval. (A repeated interval occurs when
clocks are rolled back at the end of daylight saving time or when the UTC offset for the current zone is decreased
for political reasons.) The value 0 (1) represents the earlier (later) of the two moments with the same wall time
representation.

New in version 3.6.

Supported operations:

Operation Result

datetime2 = datetimel + timedelta | (1)

datetime2 = datetimel - timedelta | (2)

timedelta = datetimel - datetime2 | (3)

datetimel < datetime?2 Compares datetime to datetime. (4)

(1) datetime? is a duration of timedelta removed from datetimel, moving forward in time if t imedelta.days
>0, or backward if t imedelta.days <0. The result has the same t z i nfo attribute as the input datetime,
and datetime?2 - datetimel == timedelta after. OverflowError israised if datetime2.year would be smaller
than MTNYEAR or larger than MAXYEAR. Note that no time zone adjustments are done even if the input is an
aware object.

(2) Computes the datetime?2 such that datetime2 + timedelta == datetime1. As for addition, the result has the same
tzinfo attribute as the input datetime, and no time zone adjustments are done even if the input is aware.

184 Chapter 8. Data Types

The Python Library Reference, Release 3.8.20

(3) Subtraction of a datetime from a datetime is defined only if both operands are naive, or if both are
aware. If one is aware and the other is naive, TypeError is raised.

If both are naive, or both are aware and have the same ¢ zinfo attribute, the t z i nfo attributes are ignored,
and the result is a t imedelta object ¢ such that datetime2 + t == datetimel. No time zone
adjustments are done in this case.

If both are aware and have different tzinfo attributes, a—b acts as if a and b were first converted
to naive UTC datetimes first. The result is (a.replace (tzinfo=None) - a.utcoffset()) -
(b.replace (tzinfo=None) - b.utcoffset ()) except that the implementation never overflows.

(4) datetimel is considered less than datetime2 when datetimel precedes datetime2 in time.

If one comparand is naive and the other is aware, TypeError is raised if an order comparison is attempted.
For equality comparisons, naive instances are never equal to aware instances.

If both comparands are aware, and have the same t z i n o attribute, the common t z i nfo attribute is ignored
and the base datetimes are compared. If both comparands are aware and have different t z i nfo attributes,
the comparands are first adjusted by subtracting their UTC offsets (obtained from self.utcoffset ()).

Changed in version 3.3: Equality comparisons between aware and naive datet ime instances don’t raise
TypeError.

Note: In order to stop comparison from falling back to the default scheme of comparing object addresses,
datetime comparison normally raises TypeError if the other comparand isn’t also a datet ime object.
However, Not Implemented is returned instead if the other comparand has a timetuple () attribute.
This hook gives other kinds of date objects a chance at implementing mixed-type comparison. If not, when a
datet ime object is compared to an object of a different type, TypeError is raised unless the comparison
is == or !=. The latter cases return False or True, respectively.

Instance methods:

datetime.date ()
Return date object with same year, month and day.

datetime.time ()
Return ¢ ime object with same hour, minute, second, microsecond and fold. tzinfo is None. See also
method timetz ().

Changed in version 3.6: The fold value is copied to the returned t ime object.

datetime.timetz ()
Return t i me object with same hour, minute, second, microsecond, fold, and tzinfo attributes. See also method
time ().

Changed in version 3.6: The fold value is copied to the returned t ime object.

datetime.replace (year=self.year, month=self.month, day=self.day, hour=self.hour, minute=self.minute,
second=self.second, microsecond=self.microsecond, tzinfo=self.tzinfo, *, fold=0)
Return a datetime with the same attributes, except for those attributes given new values by whichever keyword
arguments are specified. Note that t zinfo=None can be specified to create a naive datetime from an aware
datetime with no conversion of date and time data.

New in version 3.6: Added the fold argument.

datetime.astimezone (1z=None)
Return a datet ime object with new t zinfo attribute #z, adjusting the date and time data so the result is
the same UTC time as self, but in #z’s local time.

If provided, #z must be an instance of a t zinfo subclass, and its ut cof fset () and dst () methods must
not return None. If self is naive, it is presumed to represent time in the system timezone.

If called without arguments (or with t z=None) the system local timezone is assumed for the target timezone.
The . tzinfo attribute of the converted datetime instance will be set to an instance of timezone with the
zone name and offset obtained from the OS.

8.1. datetime — Basic date and time types 185

The Python Library Reference, Release 3.8.20

If self.tzinfoistz, self.astimezone (tz) is equal to self: no adjustment of date or time data is
performed. Else the result is local time in the timezone #z, representing the same UTC time as self: after astz
= dt.astimezone (tz),astz — astz.utcoffset () will have the same date and time data as dt
- dt.utcoffset ().

If you merely want to attach a time zone object #z to a datetime df without adjustment of date and time data, use
dt.replace (tzinfo=tz). If you merely want to remove the time zone object from an aware datetime
dt without conversion of date and time data, use dt . replace (tzinfo=None).

Note that the default t zinfo. fromutc () method can be overridden in a t zinfo subclass to affect the
result returned by ast imezone (). Ignoring error cases, ast imezone () acts like:

def astimezone (self, tz):
if self.tzinfo is tz:
return self
Convert self to UTC, and attach the new time zone object.
utc = (self - self.utcoffset()).replace(tzinfo=tz)
Convert from UTC to tz's local time.
return tz.fromutc (utc)

Changed in version 3.3: #z now can be omitted.

Changed in version 3.6: The ast imezone () method can now be called on naive instances that are presumed
to represent system local time.

datetime.utcoffset ()
If tzinfois None, returns None, else returns self.tzinfo.utcoffset (self), and raises an ex-
ception if the latter doesn’t return None or a t imede 1t a object with magnitude less than one day.

Changed in version 3.7: The UTC offset is not restricted to a whole number of minutes.

datetime.dst ()
If tzinfois None, returns None, else returns self.tzinfo.dst (self), and raises an exception if
the latter doesn’t return None or a t imedet a object with magnitude less than one day.

Changed in version 3.7: The DST offset is not restricted to a whole number of minutes.

datetime.tzname ()
If tzinfois None, returns None, else returns self.tzinfo.tzname (self), raises an exception if
the latter doesn’t return None or a string object,

datetime.timetuple ()
Return a t ime. st ruct_time such as returned by t ime. localtime ().

d.timetuple () is equivalent to:

time.struct_time ((d.year, d.month, d.day,
d.hour, d.minute, d.second,
d.weekday (), yday, dst))

where yday = d.toordinal() - date(d.year, 1, 1).toordinal() + 1isthedaynum-
ber within the current year starting with 1 for January 1st. The tm_1isdst flag of the result is set according
to the dst () method: tzinfois None or dst () returns None, tm_1isdst issetto —1;else if dst ()
returns a non-zero value, tm_isdst issetto 1;else tm_ isdst issetto 0.

datetime.utctimetuple ()
If datetime instance d is naive, this is the same as d.timetuple () except that tm_1isdst is forced to
0 regardless of what d.dst () returns. DST is never in effect for a UTC time.

If d is aware, d is normalized to UTC time, by subtracting d.utcoffset (),anda t ime. st ruct_time
for the normalized time is returned. tm_1isdst is forced to 0. Note that an OverflowError may be
raised if d.year was MINYEAR or MAXYEAR and UTC adjustment spills over a year boundary.

186 Chapter 8. Data Types

The Python Library Reference, Release 3.8.20

Warning: Because naive datet ime objects are treated by many datet ime methods as local times, it
is preferred to use aware datetimes to represent times in UTC; as a result, using utcfromtimetuple
may give misleading results. If you have a naive datetime representing UTC, use datetime.
replace (tzinfo=timezone.utc) to make it aware, at which point you can use datetime.
timetuple ().

datetime.toordinal ()
Return the proleptic Gregorian ordinal of the date. The same as self.date () .toordinal ().

datetime.timestamp ()
Return POSIX timestamp corresponding to the datet ime instance. The return value is a £1oat similar to
that returned by t ime. time ().

Naive datet ime instances are assumed to represent local time and this method relies on the platform C
mktime () function to perform the conversion. Since datetime supports wider range of values than
mktime () on many platforms, this method may raise OverflowError for times far in the past or far
in the future.

For aware dat et ime instances, the return value is computed as:

(dt - datetime (1970, 1, 1, tzinfo=timezone.utc)).total_seconds ()

New in version 3.3.

Changed in version 3.6: The timestamp () method uses the fold attribute to disambiguate the times
during a repeated interval.

Note: There is no method to obtain the POSIX timestamp directly from a naive datet ime instance repre-
senting UTC time. If your application uses this convention and your system timezone is not set to UTC, you
can obtain the POSIX timestamp by supplying t zinfo=timezone.utc:

’ timestamp = dt.replace(tzinfo=timezone.utc) .timestamp ()

or by calculating the timestamp directly:

’timestamp = (dt - datetime (1970, 1, 1)) / timedelta (seconds=1)

datetime.weekday ()
Return the day of the week as an integer, where Monday is 0 and Sunday is 6. The same as self.date () .
weekday (). See also i soweekday ().

datetime.isoweekday ()
Return the day of the week as an integer, where Monday is 1 and Sunday is 7. The same as self.date () .
isoweekday (). See also weekday (), isocalendar ().

datetime.isocalendar ()
Return a 3-tuple, (ISO year, ISO week number, ISO weekday). The same as self.date ().
isocalendar ().

datetime.isoformat (sep="T", timespec=auto’)
Return a string representing the date and time in ISO 8601 format:

e YYYY-MM-DDTHH:MM:SS.ffffff,if microsecondisnot(
e YYYY-MM-DDTHH:MM:SS, if microsecondis 0
If utcoffset () does not return None, a string is appended, giving the UTC offset:
e YYYY-MM-DDTHH:MM:SS.ffffff+HH:MM[:SS[.£f£f£££f£f]],if microsecondisnot0
e YYYY-MM-DDTHH:MM:SS+HH:MM[:SS[.ffffff]],if microsecondis

Examples:

8.1. datetime — Basic date and time types 187

The Python Library Reference, Release 3.8.20

datetime.__str

>>> from datetime import datetime, timezone

>>> datetime (2019, 5, 18, 15, 17, 8, 132263).isoformat ()
'2019-05-18T15:17:08.132263"

>>> datetime (2019, 5, 18, 15, 17, tzinfo=timezone.utc) .isoformat ()
'2019-05-18T15:17:004+00:00"

The optional argument sep (default ' T ') is a one-character separator, placed between the date and time por-
tions of the result. For example:

>>> from datetime import tzinfo, timedelta, datetime
>>> class TZ (tzinfo) :
"""A time zone with an arbitrary, constant —-06:39 offset."""
def utcoffset(self, dt):
return timedelta (hours=-6, minutes=-39)

>>> datetime (2002, 12, 25, tzinfo=TZ()) .isoformat (' ')

'2002-12-25 00:00:00-06:39"
>>> datetime (2009, 11, 27, microsecond=100, tzinfo=TZ()) .isoformat ()

'2009-11-27T00:00:00.000100-06:39"

The optional argument timespec specifies the number of additional components of the time to include (the
defaultis "auto"'). It can be one of the following:

e 'auto': Same as 'seconds' if microsecondis(, same as 'microseconds' otherwise.
e 'hours': Include the hour in the two-digit HH format.

e 'minutes': Include hour and minute in HH : MM format.

e "seconds': Include hour, minute, and second in HH:MM: SS format.

e 'milliseconds': Include full time, but truncate fractional second part to milliseconds.
HH:MM:SS.sss format.

¢ 'microseconds': Include full time in HH:MM: SS. f££fff format.

Note: Excluded time components are truncated, not rounded.

ValueError will be raised on an invalid fimespec argument:

>>> from datetime import datetime

>>> datetime.now () .isoformat (timespec="minutes")
'2002-12-25T00:00"

>>> dt = datetime (2015, 1, 1, 12, 30, 59, 0)

>>> dt.isoformat (timespec="'microseconds"')
'2015-01-01T12:30:59.000000"

New in version 3.6: Added the fimespec argument.

_ 0
For a datet ime instance d, str (d) is equivalentto d.isoformat (' ').

datetime.ctime ()

Return a string representing the date and time:

>>> from datetime import datetime
>>> datetime (2002, 12, 4, 20, 30, 40).ctime ()
'Wed Dec 4 20:30:40 2002"

The output string will not include time zone information, regardless of whether the input is aware or naive.

d.ctime () is equivalent to:

188

Chapter 8. Data Types

The Python Library Reference, Release 3.8.20

time.ctime (time.mktime (d.timetuple()))

on platforms where the native C ctime () function (which time.ctime () invokes, but which
datetime.ctime () does not invoke) conforms to the C standard.

datetime.strftime (format)
Return a string representing the date and time, controlled by an explicit format string. For a complete list of
formatting directives, see strftime() and strptime() Behavior.

datetime._ format__ (format)
Same as datetime.strftime (). This makes it possible to specify a format string for a datet ime ob-
ject in formatted string literals and when using st r. format (). For a complete list of formatting directives,
see strftime() and strptime() Behavior.

Examples of Usage: datetime

Examples of working with datet ime objects:

>>> from datetime import datetime, date, time, timezone

>>> # Using datetime.combine ()

>>> d = date (2005, 7, 14)

>>> t = time (12, 30)

>>> datetime.combine(d, t)
datetime.datetime (2005, 7, 14, 12, 30)

>>> # Using datetime.now()

>>> datetime.now ()

datetime.datetime (2007, 12, 6, 16, 29, 43, 79043) # GMT +1

>>> datetime.now (timezone.utc)

datetime.datetime (2007, 12, 6, 15, 29, 43, 79060, tzinfo=datetime.timezone.utc)

>>> # Using datetime.strptime ()

>>> dt = datetime.strptime ("21/11/06 16:30", "2d/%m/Sy SH:%M")
>>> dt

datetime.datetime (2006, 11, 21, 16, 30)

>>> # Using datetime.timetuple () to get tuple of all attributes
>>> tt = dt.timetuple ()
>>> for it in tt:

print (it)
2006 # year
11 # month
21 # day
16 # hour
30 # minute
0 # second
1 # weekday (0 = Monday)
325 # number of days since 1lst January
-1 # dst - method tzinfo.dst () returned None

>>> # Date in ISO format
>>> ic = dt.isocalendar ()
>>> for it in ic:

print (it)
2006 # ISO year
47 # ISO week
2 # ISO weekday

(continues on next page)

8.1. datetime — Basic date and time types 189

The Python Library Reference, Release 3.8.20

(continued from previous page)

>>> # Formatting a datetime

>>> dt.strftime ("$A, $d. %B %Y $I:
'Tuesday, 21. November 2006 04:30PM'
>>> 'The {1} is {0:%d}, the {2} is {0:%B}, the {3} is {0:%I:%M%p}."'.format (dt, "day
<", "month", "time")

'The day is 21, the month is November, the time is 04:30PM.'

The example below defines a ¢ z i n f o subclass capturing time zone information for Kabul, Afghanistan, which used
+4 UTC until 1945 and then +4:30 UTC thereafter:

from datetime import timedelta, datetime, tzinfo, timezone

class KabulTz (tzinfo) :
Kabul used +4 until 1945, when they moved to +4:30
UTC_MOVE_DATE = datetime (1944, 12, 31, 20, tzinfo=timezone.utc)

def utcoffset (self, dt):
if dt.year < 1945:
return timedelta (hours=4)
elif (1945, 1, 1, 0, 0) <= dt.timetuple() [:5] < (1945, 1, 1, 0, 30):
An ambiguous ("imaginary'") half-hour range representing
a 'fold' in time due to the shift from +4 to +4:30.
If dt falls in the imaginary range, use fold to decide how
to resolve. See PEP495.
return timedelta (hours=4, minutes= (30 if dt.fold else 0))
else:
return timedelta (hours=4, minutes=30)

def fromutc(self, dt):
Follow same validations as in datetime.tzinfo
if not isinstance(dt, datetime) :
raise TypeError ("fromutc() requires a datetime argument")
if dt.tzinfo is not self:
raise ValueError("dt.tzinfo is not self")

A custom implementation 1is required for fromutc as

the input to this function is a datetime with utc values

but with a tzinfo set to self.

See datetime.astimezone or fromtimestamp.

if dt.replace(tzinfo=timezone.utc) >= self.UTC_MOVE_DATE:
return dt + timedelta (hours=4, minutes=30)

else:
return dt + timedelta (hours=4)

def dst (self, dt):
Kabul does not observe daylight saving time.
return timedelta (0)

def tzname (self, dt):
if dt >= self.UTC_MOVE_DATE:
return "+04:30"
return "+04"

Usage of KabulTz from above:

>>> tzl = KabulTz ()

>>> # Datetime before the change

>>> dtl = datetime (1900, 11, 21, 16, 30, tzinfo=tzl)
>>> print (dtl.utcoffset())

4:00:00

(continues on next page)

190 Chapter 8. Data Types

The Python Library Reference, Release 3.8.20

(continued from previous page)

>>> # Datetime after the change

>>> dt2 = datetime (2006, 6, 14, 13, 0, tzinfo=tzl)
>>> print (dt2.utcoffset ())

4:30:00

>>> # Convert datetime to another time zone

>>> dt3 = dt2.astimezone (timezone.utc)

>>> dt3

datetime.datetime (2006, 6, 14, 8, 30, tzinfo=datetime.timezone.utc)
>>> dt2

datetime.datetime (2006, 6, 14, 13, 0, tzinfo=KabulTz())

>>> dt2 == dt3

True

8.1.7 time Objects

A time object represents a (local) time of day, independent of any particular day, and subject to adjustment via a
tzinfo object.

class datetime.time (hour=0, minute=0, second=0, microsecond=0, tzinfo=None, *, fold=0)
All arguments are optional. #zinfo may be None, or an instance of a t zinfo subclass. The remaining argu-
ments must be integers in the following ranges:

e 0 <= hour < 24,

¢ 0 <= minute < 60,

¢ 0 <= second < 60,

¢ 0 <= microsecond < 1000000,
e fold in [0, 1].

If an argument outside those ranges is given, ValueError is raised. All default to 0 except tzinfo, which
defaults to None.

Class attributes:

time.min
The earliest representable ¢ ime, time (0, 0, 0, 0).

time.max
The latest representable ¢ ime, time (23, 59, 59, 999999).

time.resolution
The smallest possible difference between non-equal t i me objects, timedelta (microseconds=1), al-
though note that arithmetic on t ime objects is not supported.

Instance attributes (read-only):

time.hour
In range (24).

time.minute
In range (60).

time.second
In range (60).

time.microsecond
In range (1000000).

time.tzinfo
The object passed as the tzinfo argument to the t ime constructor, or None if none was passed.

8.1. datetime — Basic date and time types 191

The Python Library Reference, Release 3.8.20

time.fold
In [0, 1]. Used to disambiguate wall times during a repeated interval. (A repeated interval occurs when
clocks are rolled back at the end of daylight saving time or when the UTC offset for the current zone is decreased
for political reasons.) The value 0 (1) represents the earlier (later) of the two moments with the same wall time
representation.

New in version 3.6.

t ime objects support comparison of time to t ime, where a is considered less than b when a precedes b in time.
If one comparand is naive and the other is aware, TypeError is raised if an order comparison is attempted. For
equality comparisons, naive instances are never equal to aware instances.

If both comparands are aware, and have the same t z i nfo attribute, the common ¢ zinfo attribute is ignored and
the base times are compared. If both comparands are aware and have different t z i nfo attributes, the comparands
are first adjusted by subtracting their UTC offsets (obtained from self.utcoffset ()). In order to stop mixed-
type comparisons from falling back to the default comparison by object address, when a t ime object is compared
to an object of a different type, TypeError is raised unless the comparison is == or !=. The latter